# The Unapologetic Mathematician

## Coloring knots

Today I’m going to be talking to the graduate students about various topics relating to coloring knots. I think I’ll leave you with a little project to play with.

First, go to Bar-Natan’s table of knots. Notice how all the diagrams seem to be made up of arcs meeting up where one strand of the knot crosses under another. Pick a knot diagram and try to color each arc either red, green, or blue, subject to the following rule: at any crossing, the three arcs that meet (two for the undercrossing strand and one for the overcrossing) must either be all the same color or all different colors.

Which knots can you color using all three colors at least once? If that’s too easy for you, how many ways can you color a given knot? If that’s too easy for you, you’ve almost surely seen this before.

To get you started, I’ve tricolored the trefoil knot using all three colors.

March 30, 2007 Posted by | Knot theory | 3 Comments

## How to Play by Yourself

Sometime between dragging myself into my bed after the calculus exam and related activities last night and dragging myself back out of it in time to teach this morning, an article claiming to solve triangular peg solitaire went up on the arXiv. I’ve obviously not had time to read it, so I don’t know how good it is, but the subject matter at least should be pretty generally accessible.

March 30, 2007 Posted by | Uncategorized | 1 Comment