The Unapologetic Mathematician

Mathematics for the interested outsider

Categorification

Categorification is a big, scary word that refers to a much simpler basic idea than you’d expect, and it’s also huge business right now. There’s a lot of this going on at The n-Category Café, for instance. Both knot Floer homology and Khovanov homology are examples of categorifications that seem to be popular with the crew at the Secret Blogging Seminar. John Baez has a bunch of papers circling around “higher-dimensional algebra”, which is again about categorification.

So what is categorification? Well, as I said the core idea’s not really that hard to grasp, but it’s even easier to understand by first considering the reverse process: decategorification. And decategorification is best first approached through an example.

Since this post will be going to this fortnight’s Carnival, I’ll be saying a fair amount that I’ve said before and linking back to definitions most regular readers should know offhand. It might seem slower, but I’ll be back up to the regular rhetorical pace tomorrow. Or you could take it as a bit of review, just to make sure you’re on top of things. Because of this, the post is going to get long, so I’ll put it behind a jump.
Continue reading

June 27, 2007 Posted by | Category theory | 13 Comments

   

Follow

Get every new post delivered to your Inbox.

Join 389 other followers