The Unapologetic Mathematician

Mathematics for the interested outsider

Representable Enriched Functors

Okay, unfortunately after a lot of work I don’t ssee an elegant way to jump right into what I thought of the other day. So, we’ll get there, but slowly.

Anyhow, we remember that categories come with representable functors, which have all sorts of nice properties. This comes over to our current context. Given a monoidal category \mathcal{V}, a category \mathcal{C} enriched over \mathcal{V}, and an object C\in\mathcal{C}, we have the representable \mathcal{V}-functor \hom_\mathcal{C}(C,\underline{\hphantom{X}}):\mathcal{C}\rightarrow\mathcal{V}.

We should be clear about how this functor behaves on “morphisms”. First of all, remember that we don’t really have morphisms in an enriched category because we have hom-objects rather than hom-sets. Instead, what we get is a \mathcal{V}-natural transformation with (A,B) component \hom_\mathcal{C}(A,B)\rightarrow\hom_\mathcal{C}(C,B)^{\hom_\mathcal{C}(C,A)}. Instead of a function which assigns a function between hom-sets to each morphism, we get an arrow from the hom-object (replacing the set of morphisms) to an exponential (replacing the set of functions between hom-sets).

Of course we also have the contravariant \mathcal{V}-functor \hom_\mathcal{C}(\underline{\hphantom{X}},C), and similar comments about how it behaves on morphisms apply here.

Honestly, the first time you read this it seems pretty simple, but it’s deeper than you expect. You’re going to want to keep thinking about “elements” of a hom-object, particularly when you’re using \mathbf{Ab} as your sample enriching category, but you really have to start breaking yourself of the habit of thinking in terms of “elements” of an object — even if the objects are something so familiar as abelian groups — now.

August 25, 2007 Posted by | Category theory | 2 Comments

Nothing today

I was getting orientated for most of today, and I think some of the grad students and I are going to hit the Vieux Carré before the undergrads start showing up en masse tomorrow, so I just don’t have it in me to post the next bit today.

But I’ve been thinking about it. I’ll also have to check up on some of my references to see if they can tell me how to do what I’m pretty sure can be done, or I’ll just have to cobble it together myself. But it’s pretty cool. I’ll give you one hint: look how I started my discussions of adjoint functors.

For now, go read the Carnival. Yes, I’ll give it a fair shot while the semester begins and see if it picks up as predicted.

August 25, 2007 Posted by | Uncategorized | Leave a comment



Get every new post delivered to your Inbox.

Join 366 other followers