The Unapologetic Mathematician

Mathematics for the interested outsider

The Strong Yoneda Lemma

We gave a weak, “half-enriched” version of the Yoneda Lemma earlier. Now it’s time to pump it up to a fully-enriched version.

Given a \mathcal{V}-functor F:\mathcal{C}\rightarrow\mathcal{V} and an object K\in\mathcal{C}, then the functor defines a \mathcal{V}-natural map F_{K,C}:\hom_\mathcal{C}(K,C)\rightarrow F(C)^{F(K)}. We also have the (ordinary) adjunction
\hom_{\mathcal{V}_0}(\hom_\mathcal{C}(K,C),F(C)^{F(K)})\cong\hom_{\mathcal{V}_0}(F(K),F(C)^{\hom_\mathcal{C}(K,C)})
and under this adjunction we find F_{K,C} corresponding to a \mathcal{V}-natural transformation \phi_C:F(K)\rightarrow F(C)^{\hom_\mathcal{C}(K,C)}. Now the strong form of the Yoneda Lemma says that this family is actually the counit of the end \int_{C\in\mathcal{C}}F(C)^{\hom_\mathcal{C}(K,C)}, so by the definition of the functor category \mathcal{V}^\mathcal{C} we have an isomorphism in \mathcal{V}:
\phi:F(K)\cong\hom_{\mathcal{V}^\mathcal{C}}(\hom_\mathcal{C}(K,\underline{\hphantom{X}}),F)

So, how do we verify that F(K) is the end in question? Consider any other \mathcal{V}-natural family \alpha_C:X\rightarrow F(C)^{\hom_\mathcal{C}(K,C)}. Now we run the above adjunction backwards to get a \mathcal{V}-natural family \widetilde{\alpha}_C:\hom_\mathcal{C}(K,C)\rightarrow F(C)^X. But this is now a \mathcal{V}-natural transformation from the functor represented by K to the functor F(\underline{\hphantom{X}})^X, and so the weak form of the Yoneda Lemma tells us that \widetilde{\alpha}_C={1_{F(C)}}^\eta\circ F_{K,C} for a unique \eta:X\rightarrow F(K). Running this back through the adjunction says that \alpha_C=\phi_C\circ\eta, and the universal property is satisfied.

Let’s hit this isomorphism with the underlying set functor to get a bijection \hom_{\mathcal{V}_0}(\mathbf{1},F(K))\cong(\mathcal{V}^\mathcal{C})_0(\hom_\mathcal{C}(K,\underline{\hphantom{X}}),F). This sends an arrow \eta:\mathbf{1}\rightarrow F(K) to \phi\circ\eta, which is a \mathcal{V}-natural family with components given by \phi_C\circ\eta. But this is exactly the bijection asserted by the weak form of the Yoneda Lemma, so the weaker form is implied by the stronger one.

If we consider the special case where our functor is representable, we find that
\hom_\mathcal{C}(L,K)\cong\hom_{\mathcal{V}^\mathcal{C}}(\hom_\mathcal{C}(K,\underline{\hphantom{X}}),\hom_\mathcal{C}(L,\underline{\hphantom{X}}))

When \mathcal{V}^\mathcal{C} exists, we can convert the functor \hom_\mathcal{C}:\mathcal{C}^\mathrm{op}\otimes\mathcal{C}\rightarrow\mathcal{V} to a functor Y:\mathcal{C}^\mathrm{op}\rightarrow\mathcal{V}^\mathcal{C} by the exponential adjunction in \mathcal{V}\mathbf{-Cat}. By the case of representable functors given above, this Yoneda embedding is fully faithful. From this \mathcal{V}-functor we can establish that the Yoneda isomorphism \phi is \mathcal{V}-natural in F and K.

About these ads

September 12, 2007 - Posted by | Category theory

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 389 other followers

%d bloggers like this: