The Unapologetic Mathematician

Mathematics for the interested outsider

The Tensorator for Span 2-categories

I’ve just had a breakthrough today on my project to add structures to 2-categories of spans. I was hoping to generalize from the case of a monoidal structure on the base category \mathcal{C} that preserved pullbacks. After some discussions with John Baez and Todd Trimble (to whom I’m much indebted), I set off on this new quest and ran into some difficulties. Finally I’ve established that in order to have a well-behaved tensorator we must assume that the monoidal structure preserves pullbacks! This is a bit of a downer, in that I was really hoping to construct a wider class of braided monoidal 2-categories with duals, but at least it covers the cases that originally drew me to the problem. With luck there will still be something interesting here. Anyhow, let’s see how this works.

First we have to consider a span B\xleftarrow{f}A\xrightarrow{g}C. We want this to be invertible, and further we want its inverse to be its reflection C\xleftarrow{g}A\xrightarrow{f}B. When we pull back g over itself we get a square
Unitary Span Condition 1
Here we can swap x_l and x_r to get a unique arrow \beta:B\rightarrow B with x_l\circ\beta=x_r. For this to give us the identity span on B we need to have f\circ x_l=1_B=f\circ x_l\circ\beta. This tells us that \beta=1_B, and we will say f' for the equal arrows x_l=x_r, which is a right inverse for f: f\circ f'=1_B. Similarly we find a right inverse g' for g.

Now we use the universality of the pullback in the diagram
Unitary Span Condition 2
to give us a unique arrow x with f'\circ x=g', and similarly a unique arrow y with g'\circ y=f'. Then we see that f'\circ 1_B=f'=f'\circ x\circ y, and the universality condition tells us that 1_B=x\circ y, while 1_C=y\circ x. And thus for the span we started with to have an inverse of the right form we must have B\cong C.

Now we look for a tensorator \bigotimes_{f,g}:(f\otimes B')\circ(A\otimes g)\Rightarrow(A'\otimes g)\circ(f\otimes B). We start with spans
f=(A\xleftarrow{f_l}F\xrightarrow{f_r}A')
g=(B\xleftarrow{g_l}G\xrightarrow{g_r}B')
and we must find a span between the pullback objects (F\otimes B')\circ(A\otimes G) and (A'\otimes G)\circ(F\otimes B). Further, we will want this span to have its own reflection for an inverse, as above. But as we just showed, this means that the two objects at the ends of its legs must always be isomorphic.

Now we can specialize to pick A'=F, f_r=1_F, B=G, and g_l=1_G. Then the one leg of the tensorator span will be F\otimes G, and so the other leg must be as well, no matter what we choose for f_l and g_r! That is, to have any hope of finding such a well-behaved tensorator, the monoidal product on \mathcal{C} must preserve pullbacks!

About these ads

November 7, 2007 - Posted by | Category theory

1 Comment »

  1. [...] The Tensorator for Span 2-categories Part of the disappointment I mentioned is that the road I was on just looked so pretty. I’ve said in various places that I agree [...]

    Pingback by (Not) The Tensorator for Span 2-categories « The Unapologetic Mathematician | November 7, 2007 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 392 other followers

%d bloggers like this: