The Unapologetic Mathematician

Mathematics for the interested outsider

Column Rank

Let’s go back and consider a linear map T:V\rightarrow W. Remember that we defined its rank to be the dimension of its image. Let’s consider this a little more closely.

Any vector in the image of T can be written as T(v) for some vector v\in V. If we pick a basis \left\{e_i\right\} of V, then we can write T(v)=T(v^ie_i)=v^iT(e_i). Thus the vectors T(e_i)\in W span the image of T. And thus they contain a basis for the image.

More specifically, we can get a basis for the image by throwing out some of these vectors until those that remain are linearly independent. The number that remain must be the dimension of the image — the rank — and so must be independent of which vectors we throw out. Looking back at the maximality property of a basis, we can state a new characterization of the rank: it is the cardinality of the largest linearly independent subset of \left\{T(e_i)\right\}.

Now let’s consider in particular a linear transformation T:\mathbb{F}^m\rightarrow\mathbb{F}^n. Remember that these spaces of column vectors come with built-in bases \left\{e_i\right\} and \left\{f_j\right\} (respectively), and we have a matrix T(e_i)=t_i^jf_j. For each index i, then, we have the column vector

\displaystyle T(e_i)=\begin{pmatrix}t_i^1\\t_i^2\\\vdots\\t_i^n\end{pmatrix}

appearing as a column in the matrix \left(t_i^j\right).

So what is the rank of T? It’s the maximum number of linearly independent columns in the matrix of T. This quantity we will call the “column rank” of the matrix.

About these ads

July 1, 2008 - Posted by | Algebra, Linear Algebra

2 Comments »

  1. [...] Yesterday we defined the column rank of a matrix to be the maximal number of linearly independent columns. Flipping over, we can consider the [...]

    Pingback by Row Rank « The Unapologetic Mathematician | July 2, 2008 | Reply

  2. [...] , and we’ve got column vectors to consider. If all are linearly independent, then the column rank of the matrix is . Then the dimension of the image of is , and thus is [...]

    Pingback by The General Linear Groups « The Unapologetic Mathematician | October 20, 2008 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 389 other followers

%d bloggers like this: