The Unapologetic Mathematician

Mathematics for the interested outsider

Translating Power Series

So we know that we can have two power series expansions of the same function about different points. How are they related? An important step in this direction is given by the following theorem.

Suppose that the power series \sum\limits_{n=0}^\infty a_n(z-z_0)^n converges for |z-z_0|<r, and that it represents the function f(z) in some open subset S of this disk. Then for every point z_1\in S there is some open disk around z_1 of radius R contained in S, in which f has a power series expansion

\displaystyle f(z)=\sum\limits_{k=0}^\infty b_k(z-z_1)^k

where

\displaystyle b_k=\sum\limits_{n=k}^\infty\binom{n}{k}a_n(z_1-z_0)^{n-k}

The proof is almost straightforward. We expand

\displaystyle\begin{aligned}f(z)=\sum\limits_{n=0}^\infty a_n(z-z_0)^n=\sum\limits_{n=0}^\infty a_n(z-z_1+z_1-z_0)^n\\=\sum\limits_{n=0}^\infty a_n\sum_{k=0}^n\binom{n}{k}(z-z_1)^k(z_1-z_0)^{n-k}\end{aligned}

Now we need to interchange the order of summation. Strictly speaking, we haven’t established a condition that will allow us to make this move. However, I hope you’ll find it plausible that if this double series converges absolutely, we can adjust the order of summations freely. Indeed, we’ve seen examples of other rearrangements that all go through as soon as the convergence is absolute.

Now we consider the absolute values

\displaystyle\begin{aligned}\sum_{n=0}^\infty|a_n|\sum\limits_{k=0}^n\binom{n}{k}|z-z_1|^k|z_1-z_0|^{n-k}=\sum_{n=0}^\infty|a_n|(|z-z_1|+|z_1-z_0|)^n\\=\sum_{n=0}^\infty|a_n|(z_2-z_0)^n\end{aligned}

Where we set z_2=z_0+|z-z_1|+|z_1-z_0|. But then |z_2-z_0|<R+|z_1-z_0|\leq r, where the last inequality holds because the disk around z_1 of radius R fits within S, which fits within the disk of radius r around z_0. And so this series of absolute values must converge, and we’ll take it on faith for the moment (to be shored up when we attack double series more thoroughly) that we can now interchange the order of summations.

\displaystyle f(z)=\sum\limits_{k=0}^\infty\left(\sum_{n=k}^\infty a_n\binom{n}{k}(z_1-z_0)^{n-k}\right)(z-z_1)^k

This result allows us to recenter our power series expansions, but it only assures that the resulting series will converge in a disk which is contained within the original disk of convergence, so we haven’t necessarily gotten anything new. Yet.

About these ads

September 16, 2008 - Posted by | Analysis, Calculus, Power Series

5 Comments »

  1. [...] a point within of , we can expand as a power series about [...]

    Pingback by Derivatives of Power Series « The Unapologetic Mathematician | September 17, 2008 | Reply

  2. [...] of functions around various points, and within various radii of convergence. We even have formulas to relate expansions about nearby points. But when we move from one point to a nearby point, the [...]

    Pingback by Uniqueness of Power Series Expansions « The Unapologetic Mathematician | September 18, 2008 | Reply

  3. [...] when we translated power series, I’m going to sort of wave my hands here, motivating it by the fact that absolute convergence [...]

    Pingback by Products of Power Series « The Unapologetic Mathematician | September 22, 2008 | Reply

  4. Would you explain how you obtained the equation for b_k?

    Comment by Bernd | September 23, 2008 | Reply

  5. Bernd, look at the last formula for f(z) and compare to the first one.

    Comment by John Armstrong | September 23, 2008 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 391 other followers

%d bloggers like this: