The Unapologetic Mathematician

Mathematics for the interested outsider

Kernels and Images of Intertwiners

The next obvious things to consider are the kernel and the image of an intertwining map. So let’s say we’ve got a representation \rho:A\rightarrow\mathrm{End}(V), a representation \sigma:A\rightarrow\mathrm{End}(W), and an intertwiner f:\rho\rightarrow\sigma defined by the linear map f:V\rightarrow W which satisfies \left[\sigma(a)\right]\left(f(v)\right)=f\left(\left[\rho(a)\right](v)\right) for all v\in V.

Now the linear map f immediately gives us two subspaces: the kernel \mathrm{Ker}(f)\subseteq V and the image \mathrm{Im}(f)\subseteq W. And it turns out that each of these is actually a subrepresentation. Showing this isn’t difficult. A subrepresentation is just a subspace that gets sent to itself under the action on the whole space, so we just have to check that \rho(a) always sends vectors in \mathrm{Ker}(f) back to this subspace, and that \sigma(a) always sends vectors in \mathrm{Im}(f) back into this subspace.

First off, v\in V is in the kernel of f if f(v)=0. Then we calculate

\displaystyle\begin{aligned}f\left(\left[\rho(a)\right](v)\right)=\left[\sigma(a)\right]\left(f(v)\right)\\=\left[\sigma(a)\right](0)=0\end{aligned}

which shoes that \left[\rho(a)\right](v) is also in the kernel of f.

On the other hand, if w\in W is in the image of f, then there is some v\in V so that w=f(v). We calculate

\displaystyle\begin{aligned}\left[\sigma(a)\right](w)=\left[\sigma(a)\right]\left(f(v)\right)\\=f\left(\left[\rho(a)\right](v)\right)\end{aligned}

And so \left[\sigma(a)\right](w) is also in the image of f.

So we’ve seen that the image and kernel of an intertwining map have well-defined actions of A, and so we have subrepresentations. Immediately we can conclude that the coimage \mathrm{Coim}(f)=V/\mathrm{Ker}(f) and the cokernel \mathrm{Cok}(f)=W/\mathrm{Im}(f) are quotient representations.

About these ads

December 12, 2008 - Posted by | Algebra, Representation Theory

2 Comments »

  1. [...] First of all, the intertwiners between any two representations form a vector space, which is really an abelian group plus stuff. Since the composition of intertwiners is bilinear, this makes into an -category. Secondly, we can take direct sums of representations, which is a categorical biproduct. Thirdly, every intertwiner has a kernel and a cokernel. [...]

    Pingback by The Category of Representations is Abelian « The Unapologetic Mathematician | December 15, 2008 | Reply

  2. [...] and a representation of , which actions commute with each other. Our antisymmetric tensors are the image of a certain action from the symmetric group, which is an intertwiner of the action. Thus we have [...]

    Pingback by The Determinant « The Unapologetic Mathematician | December 31, 2008 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 393 other followers

%d bloggers like this: