The Unapologetic Mathematician

Mathematics for the interested outsider

Extracting the Determinant from the Characteristic Polynomial

This one’s a pretty easy entry. If we know the characteristic polynomial of an endomorphism T on a vector space V of finite dimension d, then we can get its determinant from the constant term.

First let’s look at the formula for the characteristic polynomial in terms of the matrix entries of T:

\displaystyle\sum\limits_{\pi\in S_d}\mathrm{sgn}(\pi)\prod\limits_{k=1}^d(\lambda\delta_k^{\pi(k)}-t_k^{\pi(k)})

Now we’re interested in \det(T), which is exactly what we calculate to determine if the kernel of T is nontrivial. But the kernel of T is the eigenspace corresponding to eigenvalue {0}, so this should have something to do with the characteristic polynomial at \lambda=0. So let’s see what happens.

\displaystyle\sum\limits_{\pi\in S_d}\mathrm{sgn}(\pi)\prod\limits_{k=1}^d(-t_k^{\pi(k)})=\sum\limits_{\pi\in S_d}\mathrm{sgn}(\pi)(-1)^d\prod\limits_{k=1}^dt_k^{\pi(k)}=(-1)^d\sum\limits_{\pi\in S_d}\mathrm{sgn}(\pi)\prod\limits_{k=1}^dt_k^{\pi(k)}

This is just (-1)^d times our formula for the determinant of T. But of course we know the dimension ahead of time, so we know whether to flip the sign or not. So just take the characteristic polynomial, evaluate it at zero, and flip the sign if necessary to get the determinant.

There’s one thing to note here, even though it doesn’t really tell us anything new. We’ve said that T is noninvertible if and only if its determinant is zero. Now we know that this will happen if and only if the constant term of the characteristic polynomial is zero. In this case, the polynomial must have a root at \lambda=0, which means that the {0}-eigenspace of T is nontrivial. But this is just the kernel of T is nontrivial. Thus (as we already know) a linear transformation is noninvertible if and only if its kernel is nontrivial.

About these ads

January 29, 2009 - Posted by | Algebra, Linear Algebra

1 Comment »

  1. [...] of any choice of basis. The leading coefficient is always , so that’s not very interesting. The constant term is the determinant, which we’d known from other considerations before. There’s one more coefficient [...]

    Pingback by The Trace of a Linear Transformation « The Unapologetic Mathematician | January 30, 2009 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 392 other followers

%d bloggers like this: