The Unapologetic Mathematician

Mathematics for the interested outsider

Integrals are Additive Over Regions

Before I state today’s proposition, I need to define what I mean by saying that two sets in \mathbb{R}^n are “nonoverlapping”. Intuitively, we might think that this means they have no intersection, but that’s not quite it. We’ll allow some intersection, but only at boundary points. Since the regions we’re interested in for integrals are Jordan measurable, and their boundaries have zero Jordan content, so we know changing things along these boundaries in an integral will make no difference.

Let \left\{S_i\right\}_{i=1}^n be a collection of bounded regions in \mathbb{R}^n, so that any two of these regions are nonoverlapping. We define their union

\displaystyle S=\bigcup\limits_{i=1}^nS_i

and let f:S\rightarrow\mathbb{R} be a bounded function defined on this union. Then f is integrable on S if and only if it’s integrable on each S_i, and we find

\displaystyle\int\limits_Sf\,dx=\sum\limits_{i=1}^n\int\limits_{S_i}f\,dx

Indeed, if R is some n-dimensional interval containing S, then it will also contain each of the smaller regions S_i, and we can define

\displaystyle\int\limits_Sf\,dx=\int\limits_Rf(x)\chi_S(x)\,dx

and

\displaystyle\int\limits_{S_i}f\,dx=\int\limits_Rf(x)\chi_{S_i}(x)\,dx

We can use Lebesgue’s condition to establish our assertion about integrability. On the one hand, the discontinuities of f in S_i must be contained within those of S, so if the latter set has measure zero then so must the former. On the other hand, the discontinuities of f consist of those within each of the S_i, and maybe some along the boundaries. Since the boundaries have measure zero, and we assume that the discontinuities in each S_i are of measure zero, their (countable) union will also have measure zero. And then so must the set of discontinuities of f in S have measure zero as well.

The inclusion-exclusion principle tells us that we can rewrite the characteristic function of S:

\displaystyle\begin{aligned}\chi_S&=\chi_{S_1\cup\dots\cup S_n}\\&=\sum\limits_{1\leq i\leq n}\chi_{S_i}-\sum\limits_{1\leq i<j\leq n}\chi_{S_i\cap S_j}+\sum\limits_{1\leq i<j<k\leq n}\chi_{S_i\cap S_j\cap S_k}-\dots+(-1)^n\chi_{S_1\cap\dots\cap S_n}\end{aligned}

We can put this into our integral and use the fact that integrals are additive with respect to finite sums in the integrand

\displaystyle\begin{aligned}\int\limits_Sf\,dx&=\int\limits_Rf(x)\chi_S(x)\,dx\\&=\sum\limits_{1\leq i\leq n}\int\limits_Rf(x)\chi_{S_i}(x)\,dx-\sum\limits_{1\leq i<j\leq n}\int\limits_Rf(x)\chi_{S_i\cap S_j}(x)\,dx+\dots+(-1)^n\int\limits_Rf(x)\chi_{S_1\cap\dots\cap S_n}(x)\,dx\\&=\sum\limits_{1\leq i\leq n}\int\limits_{S_i}f\,dx-\sum\limits_{1\leq i<j\leq n}\int\limits_{S_i\cap S_j}f\,dx+\dots+(-1)^n\int\limits_{S_1\cap\dots\cap S_n}f\,dx\end{aligned}

But we assumed that all the S_i are nonoverlapping, so any intersection of two or more of them must lie only along their boundaries. And since these boundaries all have Jordan content zero the integrals over them must come out to zero. We’re left with only the sum over each subregion, as we wanted.

About these ads

December 30, 2009 - Posted by | Analysis, Calculus

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 389 other followers

%d bloggers like this: