## Completions of Measures

We’ve shown that we can uniquely extend a -finite measure on a ring to a unique -finite measure on the -ring . But, of course, we actually found that we could restrict the outer measure to the -ring of -measurable sets, which may be larger than . Luckily, we can get this extra ground without having to go through the outer measure.

What’s the essential difference? What do we know about that we don’t know about ? The measure on is complete. The smaller -ring may not contain all negligible sets.

So, let’s throw them in; if is a measure on a -ring , define to be the class of all sets , where , and is a negligible with respect to the measure , or “-negligible”. This collection is a -algebra, and the set function defined on by is a complete measure called the “completion” of .

First, given sets and with , we have the two equations

These tell us that any set that can be written as the symmetric difference of a set in and a measurable set can also be written as the union of two other such sets, and vice versa. That is, we can also characterize as the class of sets of the form instead of .

This characterization makes it clear that is closed under countable unions. Indeed, just write each set in a sequence as a union of a set from and a -negligible set . The countable union of the is still in , and the countable union of the negligible sets is still negligible. Thus is a -ring.

Now, if we have two ways of writing a set in , say , then we also have the equation . And, therefore, . Therefore, , and the above definition of is unambiguous.

Using the characterization of in terms of unions, it’s easy to verify that is a measure. We only need to check countable additivity, which is perfectly straightforward; the union of a pairwise disjoint sequence of sets is formed by taking the union of the and the . The measure is countably additive on the , and the union of the is still negligible.

Finally, we must show that is complete. But if we have a set with , then and with . Thus any subset is also a subset of , with . Writing it as , we find , and so is complete.

There’s just one fly in the ointment: we don’t really know that this complete measure is the same as the one we get by restricting from to -measurable sets. It turns out that if is -finite on , then the completion of the extension of to *is* the same as this restriction.

Since we’ve been using for the completion, let’s write for the class of -measurable sets. Since restricted to is complete, it follows that , and that and coincide on . We just need to show that .

In light of the fact that is also -finite on , we just need to show that if has finite outer measure, then . But in this case has a measurable cover with . Since these are finite, we find that . But *also* has a measurable cover , with . And so we can write , showing that .

[...] could also define in terms of the completed measure. Since , it’s [...]

Pingback by Inner Measures « The Unapologetic Mathematician | April 8, 2010 |

[...] we can use this method of inner measures as an alternative approach to our extension theorems. If is a -finite measure on a ring , and if is the induced outer measure on , then for every set [...]

Pingback by Using Measurable Covers and Kernels II « The Unapologetic Mathematician | April 13, 2010 |

[...] the ring of finite disjoint unions of semiclosed intervals. Now we want to apply our extension and completion [...]

Pingback by Lebesgue Measure « The Unapologetic Mathematician | April 19, 2010 |