The Unapologetic Mathematician

Mathematics for the interested outsider

Properties of Garnir Elements from Tableaux 2

When we pick a tableau t with a certain row descent and use it to pick sets A and B, as we’ve done, the resulting Garnir element is a sum of a bunch of tabloids coming from a bunch of tableaux. I say that the column tabloid [t] corresponding to the original tableau is dominated by all the other tabloids, using the column dominance order.

Indeed, when considering column tabloids we can rearrange the entries within columns freely, so we may assume that they’re always increasing down the columns. If we have our row descent in row i, we can label the entries in the left column by as and those in the right column by bs. Our tabloid then looks — in these two columns, at least — something like

\displaystyle\begin{array}{ccc}a_1&\hphantom{X}&b_1\\&&\wedge\\a_2&&b_2\\&&\wedge\\\vdots&&\vdots\\&&\wedge\\a_i&>&b_i\\\wedge&&\\\vdots&&\vdots\\\wedge&&b_q\\a_p&&\end{array}

We see our sets A=\{a_i,\dots,a_p\} and B=\{b_1,\dots,b_i\}. The permutations in the transversal that we use to construct our Garnir element work by moving swapping some of the bs with some of the as. But since all that bs are smaller than all the as, while they occur in a row further to the right, the dominance lemma for column tabloids tells us that any such swap can only move the tabloid up in the dominance order.

It is in this sense that the Garnir element lets us replace a tabloid with a linear combination of other tabloids that are “more standard”. And it puts us within striking distance of our goal.

About these ads

January 20, 2011 - Posted by | Algebra, Representation Theory, Representations of Symmetric Groups

2 Comments »

  1. […] “Straightening” a Polytabloid Let’s look at one example of “straightening” out a polytabloid to show it’s in the span of the standard polytabloids, using the Garnir elements. […]

    Pingback by “Straightening” a Polytabloid « The Unapologetic Mathematician | January 25, 2011 | Reply

  2. […] suppose that it does have a row descent, which would keep it from being semistandard. Just like the last time we saw row descents, we get a chain of distinct elements running up the two […]

    Pingback by Intertwinors from Semistandard Tableaux Span, part 2 « The Unapologetic Mathematician | February 12, 2011 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 392 other followers

%d bloggers like this: