The Unapologetic Mathematician

Mathematics for the interested outsider

The Lie Derivative on Cohomology

With Cartan’s formula in hand we can show that the Lie derivative is a chain map L_X:\Omega(M)\to\Omega(M). That is, it commutes with the exterior derivative. And indeed, it’s easy to calculate

\displaystyle\begin{aligned}L_X\circ d=(d\circ\iota_X+\iota_X\circ d)\circ d&=d\circ\iota_X\circ d\\d\circ L_X=d\circ(d\circ\iota_X+\iota_X\circ d)&=d\circ\iota_X\circ d\end{aligned}

And so, like any chain map, the Lie derivative defines homomorphisms on cohomology: L_X:H^k(M)\to H^k(M). But which homomorphism does it define?

Well, it turns out that Cartan’s formula comes in handy here as well, for it’s exactly what we need to say that the Lie derivative is null-homotopic. And like any null-homotopic map, it defines the zero map on cohomology. That is, if we take some closed k-form \omega\in Z^k(M), which defines a cohomology class in H^k(M) — any cohomology class has such a representative k-form — and hit it with L_X, the result is an exact k-form.

Actually, this shouldn’t be very surprising, considering Cartan’s formula. Indeed, we can calculate directly

\displaystyle L_X\omega=d(\iota_X\omega)+\iota_X(d\omega)=d(\iota_X\omega)

since by assumption \omega is closed, which means that d\omega=0.

About these ads

July 28, 2011 - Posted by | Differential Topology, Topology

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 393 other followers

%d bloggers like this: