The Unapologetic Mathematician

Mathematics for the interested outsider

The Classical Stokes Theorem

At last we come to the version of Stokes’ theorem that people learn with that name in calculus courses. Ironically, unlike the fundamental theorem and divergence theorem special cases, Stokes’ theorem only works in dimension n=3, where the differential can take us straight from a line integral over a 1-dimensional region to a surface integral over an n-1-dimensional region.

So, let’s say that S is some two-dimensional oriented surface inside a three-dimensional manifold M, and let c=\partial S be its boundary. On the other side, let \alpha be a 1-form corresponding to a vector field F. We can easily define the line integral

\displaystyle\int\limits_c\alpha

and Stokes’ theorem tells us that this is equal to

\displaystyle\int\limits_{\partial S}\alpha=\int\limits_Sd\alpha

Now if we define \beta=*d\alpha as another 1-form then we know it corresponds to the curl \nabla\times F. But on the other hand we know that in dimension 3 we have *^2=1, and so we find *\beta=**d\alpha=d\alpha as well. Thus we have

\displaystyle\int\limits_c\alpha=\int\limits_S*\beta

which means that the line integral of F around the (oriented) boundary c of S is the same as the surface integral of the curl \nabla\times F through S itself. And this is exactly the old Stokes theorem from multivariable calculus.

About these ads

November 23, 2011 - Posted by | Differential Geometry, Geometry

1 Comment »

  1. […] the left we can use Stokes’ theorem, while on the right we can pull the derivative outside the […]

    Pingback by Maxwell’s Equations (Integral Form) « The Unapologetic Mathematician | February 2, 2012 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 393 other followers

%d bloggers like this: