The Unapologetic Mathematician

Mathematics for the interested outsider

The Electromagnetic Wave Equations

Maxwell’s equations give us a collection of differential equations to describe the behavior of the electric and magnetic fields. Juggling them, we can come up with other differential equations that give us more insight into how these fields interact. And, in particular, we come up with a familiar equation that describes waves.

Specifically, let’s consider Maxwell’s equations in a vacuum, where there are no charges and no currents:

\displaystyle\begin{aligned}\nabla\cdot E&=0\\\nabla\times E&=-\frac{\partial B}{\partial t}\\\nabla\cdot B&=0\\\nabla\times B&=\epsilon_0\mu_0\frac{\partial E}{\partial t}\end{aligned}

Now let’s take the curl of both of the curl equations:

\displaystyle\begin{aligned}\nabla\times(\nabla\times E)&=-\frac{\partial}{\partial t}(\nabla\times B)\\&=-\frac{\partial}{\partial t}\left(\epsilon_0\mu_0\frac{\partial E}{\partial t}\right)\\&=-\epsilon_0\mu_0\frac{\partial^2 E}{\partial t^2}\\\nabla\times(\nabla\times B)&=\epsilon_0\mu_0\frac{\partial}{\partial t}(\nabla\times E)\\&=\epsilon_0\mu_0\frac{\partial}{\partial t}\left(-\frac{\partial B}{\partial t}\right)\\&=-\epsilon_0\mu_0\frac{\partial^2 B}{\partial t^2}\end{aligned}

We also have an identity for the double curl:

\displaystyle\nabla\times(\nabla\times F)=\nabla(\nabla\cdot F)-\nabla^2F

But for both of our fields we have \nabla\cdot F=0, meaning we can rewrite our equations as

\displaystyle\begin{aligned}\frac{\partial^2 E}{\partial t^2}-\frac{1}{\epsilon_0\mu_0}\nabla^2E&=0\\\frac{\partial^2 B}{\partial t^2}-\frac{1}{\epsilon_0\mu_0}\nabla^2B&=0\end{aligned}

which are the wave equations we were looking for.

About these ads

February 7, 2012 - Posted by | Electromagnetism, Mathematical Physics

2 Comments »

  1. [...] derived a “wave equation” from Maxwell’s equations, but it’s not clear what it means, or even why this is called [...]

    Pingback by Plane Waves « The Unapologetic Mathematician | February 8, 2012 | Reply

  2. [...] we’ve derived the wave equation from Maxwell’s equations, and we have worked out the plane-wave solutions. But there’s [...]

    Pingback by The Propagation Velocity of Electromagnetic Waves « The Unapologetic Mathematician | February 9, 2012 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 386 other followers

%d bloggers like this: