The Unapologetic Mathematician

Mathematics for the interested outsider

New Modules from Old

There are a few standard techniques we can use to generate new modules for a Lie algebra L from old ones. We’ve seen direct sums already, but here are a few more.

One way is to start with a module M and then consider its dual space M^*. I say that this can be made into an L-module by setting

\displaystyle\left[x\cdot\lambda\right](m)=-\lambda(x\cdot m)

for all x\in L, \lambda\in M^*, and m\in M. Bilinearity should be clear, so we just check the defining property of a module. That is, we take two Lie algebra elements x,y\in L and check

\displaystyle\begin{aligned}\left[[x,y]\cdot f\right](m)&=-f([x,y]\cdot m)\\&=-f(x\cdot(y\cdot m)-y\cdot(x\cdot m))\\&=f(y\cdot(x\cdot m))-f(x\cdot(y\cdot m))\\&=\left[y\cdot f\right](x\cdot m)-\left[x\cdot f\right](y\cdot m)\\&=\left[x\cdot(y\cdot f)\right](m)-\left[y\cdot(x\cdot f)\right](m)\\&=\left[x\cdot(y\cdot f)-y\cdot(x\cdot f)\right](m)\end{aligned}

so [x,y]\cdot f=x\cdot(y\cdot f)-y\cdot(x\cdot f) for all f\in M^*, as desired.

Another way is to start with modules M and N and form their tensor product M\otimes N. Now we define a module structure on this space by

\displaystyle x\cdot m\otimes n=(x\cdot m)\otimes n + m\otimes(x\cdot n)

We check the defining property again. Calculate:

\displaystyle\begin{aligned}{}[x,y]\cdot m\otimes n&=([x,y]\cdot m)\otimes n+m\otimes([x,y]\cdot n)\\&=(x\cdot(y\cdot m)-y\cdot(x\cdot m))\otimes n+m\otimes(x\cdot(y\cdot n)-y\cdot(x\cdot n))\\&=(x\cdot(y\cdot m))\otimes n-(y\cdot(x\cdot m))\otimes n+m\otimes(x\cdot(y\cdot n))-m\otimes(y\cdot(x\cdot n))\end{aligned}

while

\displaystyle\begin{aligned}x\cdot(y\cdot m\otimes n)-y\cdot(x\cdot m\otimes n)=&x\cdot((y\cdot m)\otimes n+m\otimes(y\cdot n))-y\cdot((x\cdot m)\otimes n+m\otimes(x\cdot n))\\=&x\cdot((y\cdot m)\otimes n)+x\cdot(m\otimes(y\cdot n))-y\cdot((x\cdot m)\otimes n)-y\cdot(m\otimes(x\cdot n))\\=&(x\cdot(y\cdot m))\otimes n+(y\cdot m)\otimes(x\cdot n)+(x\cdot m)\otimes(y\cdot n)+m\otimes(x\cdot(y\cdot n))\\&-(y\cdot(x\cdot m))\otimes n-(x\cdot m)\otimes(y\cdot n)-(y\cdot m)\otimes(x\cdot n)-m\otimes(y\cdot(x\cdot n))\\=&(x\cdot(y\cdot m))\otimes n+m\otimes(x\cdot(y\cdot n))-(y\cdot(x\cdot m))\otimes n-m\otimes(y\cdot(x\cdot n))\end{aligned}

These are useful, and they’re only just the beginning.

About these ads

September 17, 2012 - Posted by | Algebra, Lie Algebras, Representation Theory

1 Comment »

  1. [...] are a few constructions we can make, starting with the ones from last time and applying them in certain special [...]

    Pingback by More New Modules from Old « The Unapologetic Mathematician | September 21, 2012 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 393 other followers

%d bloggers like this: