The Unapologetic Mathematician

Mathematics for the interested outsider

Orders

About these ads

March 11, 2007 - Posted by | Fundamentals, Orders

11 Comments »

  1. […] A well-ordering on a set is a special kind of total order: one in which every non-empty subset contains a least […]

    Pingback by Well-Ordering « The Unapologetic Mathematician | April 2, 2007 | Reply

  2. […] Lower Bounds and Euclid’s Algorithm One interesting question for any partial order is that of lower or upper bounds. Given a partial order and a subset we say that is a lower […]

    Pingback by Greatest Lower Bounds and Euclid's Algorithm « The Unapologetic Mathematician | May 4, 2007 | Reply

  3. […] A poset which has both least upper bounds and greatest lower bounds is called a lattice. In more detail, […]

    Pingback by Lattices « The Unapologetic Mathematician | May 14, 2007 | Reply

  4. […] containment from to those collections of subsets of which are actually topologies, it defines a partial order on the collection of all topologies on […]

    Pingback by Topology « The Unapologetic Mathematician | November 5, 2007 | Reply

  5. […] numbers for sequences is that they’re “directed”. That is, there’s an order on them. It’s a particularly simple order since it’s total — any two elements are […]

    Pingback by Nets, Part I « The Unapologetic Mathematician | November 19, 2007 | Reply

  6. […] let’s consider the collection of all subspaces of . This is a partially-ordered set, where the order is given by containment of the underlying sets. It’s sort of like the power […]

    Pingback by The Sum of Subspaces « The Unapologetic Mathematician | July 21, 2008 | Reply

  7. […] Complements and the Lattice of Subspaces We know that the poset of subspaces of a vector space is a lattice. Now we can define complementary subspaces in a way […]

    Pingback by Orthogonal Complements and the Lattice of Subspaces « The Unapologetic Mathematician | May 7, 2009 | Reply

  8. […] we want to introduce a partial order on the collection of partitions called the “dominance order”. Given partitions and , […]

    Pingback by The Dominance Order on Partitions « The Unapologetic Mathematician | December 17, 2010 | Reply

  9. What does the antisymmetry axiom gain / lose you?

    Comment by isomorphismes | January 7, 2015 | Reply

  10. Antisymmetry makes it so that if two elements satisfy x\preceq y and y\preceq x then we actually have x=y. This makes life simpler in some situations.

    As a more visual example, imagine the preorder as a graph, with an arrow from x to y if x\preceq y (pointing “up” the order). Then the graph of a preorder can have nontrivial loops, with an arrow from x to y and another one back. The graph of a partial order will be acyclic; partial orders are “simpler” than preorders in the same way acyclic graphs are simpler than general graphs.

    Comment by John Armstrong | January 7, 2015 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 411 other followers

%d bloggers like this: