Tensor products of abelian groups
Often enough we’re going to see the following situation. There are three abelian groups — ,
, and
— and a function
that is linear in each variable. What does this mean?
Well, “linear” just means “preserves addition” as in a homomorphism, but I don’t mean that is a homomorphism from
to
. That would mean the following equation held:
Instead, I want to say that if we fix one variable, the remaining function of the other variable is a homomorphism. That is
we call such a function “bilinear”.
The tensor product is a construction we use to replace bilinear functions by linear functions. It is defined by yet another universal property: a tensor product of and
is an abelian group
and a bilinear function
so that for every other bilinear function
there is a unique linear function
so that
. Like all objects defined by universal properties, the tensor product is automatically unique up to isomorphism if it exists.
So here’s how to construct one. I claim that has a presentation by generators and relations as an abelian group. For generators take all elements of
, and for relations take all the elements
and
for all
and
in
and
and
in
.
By the properties of such presentations, any function of the generators — of — defines a linear function on
if and only if it satisfies the relations. That is, if we apply a function
to each relation and get
every time, then
defines a unique function
on the presented group. So what does that look like here?
So a bilinear function gives rise to a linear function
, just as we want.
Usually we’ll write the tensor product of and
as
, and the required bilinear function as
.
Now, why am I throwing this out now? Because we’ve already seen one example. It’s a bit trivial now, but catching it while it’s small will help see the relation to other things later. The distributive law for a ring says that multiplication is a bilinear function of the underlying abelian group! That is, we can view a ring as an abelian group equipped with a linear map
for multiplication.
[…] on tensor products and direct sums We’ve defined the tensor product and the direct sum of two abelian groups. It turns out they interact very […]
Pingback by More on tensor products and direct sums « The Unapologetic Mathematician | April 17, 2007 |
[…] products of modules The notion of a tensor product also extends to modules, but the generalization is not quite as straightforward as it was for […]
Pingback by Tensor products of modules « The Unapologetic Mathematician | April 30, 2007 |
The third condition in the definition of linearity follows from the first two… I think.
I think you mean the third condition in the definition of bilinearity. And I wasn’t asserting that it’s independent, but rather drawing the distinction between the previously defined condition of linearity and this condition of bilinearity.
[…] map defined by . Note carefully that this is linear as a function of the pair . It’s not bilinear — linear in each of and separately — which would mean bringing in the tensor […]
Pingback by The Inclusion-Exclusion Principle « The Unapologetic Mathematician | July 24, 2008 |
Hi, everyone:
This is my first time here. Great site.
I wonder what the general bilinear map t as above is ,
in the case where A=R^n and B=R^m , as Abelian groups,
i.e., what bilinear map would make the diagram:
R^n x R^m –t–> R^n (x) R^m
|
|f
\|/
etc. commute. Anyone know?
C
It’s pretty straightforward, Bacile. The universal bilinear map from
to
sends the pair
to the tensor product
.
O.K., say we are tensoring R^n and R^m as V.Spaces
over R
Am I wrong to assume that once we choose specific
V.Spaces to tensor , that (x) has to be a specific
map?.
Let me give an example for n=m=2, with the only
bilinear map I can think of : inner-product in R^2 :
= xx’+yy’
This is a bilinear map from R^2xR^2 –>R
Now, we must find a linear map L: R^2(x)R^2 –>R
that makes the diagram commute, so that we must have:
L ( (x,y)(x)(x’,y’))= xx’+yy’ =
Now, in order for L to have this property, (x)
must be a specific map on (a,b)(x)(c,d) in R^2(x)R^2.
or do we just appeal to the (valid, I agree) argument
that shows the existence of this (x) making the diagram
commute.
I agree that (x) is an abstract universal bilinear map,
but I think that once we choose the V.Spaces to tensor,
(x) must become a specific map.
Maybe another way of looking at it is that we can
use the fact that R^2(x)R^2 ~ R^4 . Then it seems we
could use this isomorphism to pullback any map
R^2(x)R^2–>R into a map R^4–>R
Hope this is not too far out.
Anyway, thanks for any replies.
I just told you what specific map it was…
Okay, let’s try this. Say your vector space
has a basis
and
has basis
. Then you have a basis for
given by
. So the pair
gets sent to
, and we extend by bilinearity.
Say, for instance, we have the vectors
and
. Then the pair
gets sent to
. In your example, you’ve got the vectors
and
. As a pair, they get sent to the linear combination
Now, we can choose an isomorphism
with the correspondence
Then the pair of vectors above is send to the vector
[…] the space itself. Foremost among these is the idea of a bilinear form. This is really nothing but a bilinear function to the base field: . Of course, this means that it’s equivalent to a linear function […]
Pingback by Bilinear Forms « The Unapologetic Mathematician | April 14, 2009 |
[…] scalars and , and for any index . Equivalently, by the defining universal property of tensor products, this is equivalent to a linear function — a linear functional on . That is, the space of […]
Pingback by Multilinear Functionals « The Unapologetic Mathematician | October 22, 2009 |
Hi everyone. I have a little problem… Let G be an abelian group and consider G\otimes_{\Z}\Q where \Q is the ring of rational numbers and \Z the one of integers. Take an element g\otimes q with g\in G and q\in \Q (it easily seen that any element of G\otimes_{\Z}\Q has this form).
Is it true that g\otimes q=0 if and ONLY IF g is a torsion element?
the if part is trivial but I have some truble with the other implication (in any case I’m quite sure it is true). Clearly you have to suppose q\neq 0.
It’s been 11 years, but Is it too late to be pedantic and point out that the ONLY IF part fails for q = 0?
Simone did say at the end that “Clearly you have to suppose
“.
I missed that part. I’ll be over there in the corner, looking ashamed 🙂
The if part isn’t even true. Let
and even if
is torsion the tensor isn’t zero.
of course it is! let n be the order of g, then
g\otimes 1=g\otimes n/n=ng\otimes 1/n= 0 \otimes 1/n = 0
If, instead of 1, you put a generic q in the previous line you have the proof of the if part…
Furthermore it is not difficult to prove a more general statement:
Let G be a torsion abelian group and D a divisible abelian group, then G\otimes D=0.
Even this new statement can be generalized (it is true not only for abelian groups but for modules over a PID).
Ah, yes, sorry. It’s been a long time since I’ve bothered with torsion elements.
Can you prove the contrapositive to handle the only-if part?
FACT 1
Let G be a torsion free group, then G embedds into G\otimes Q. (G\otimes Q is the divisible (i.e. injective) envelope of G)
FACT 2
Let G be an abelian group, H<G, then H\otimes\Q is a subvector space of G\otimes\Q.
Using this two facts it is possible to prove the result… in fact if x is a torsion free element of G, then x generates a group isomorphic to Z. Thanks to fact 1
—>\otimes Q= Q is injective and thanks to fact 2 we have the inclusion
—>\otimes Q—>G\otimes Q.
This proves that x\otimes 1 is non-zero.
I think this can work but in any case it uses deeper results than needed… I really think that must exist a more elementary proof…
I don’t know why but there is something missing in the message the maps were:
—> \otimes Q
and
—> \otimes Q—>G\otimes Q
ok… I cannot write that simbol…. denot with (x) the subgroup generated by x…
(x) —> (x)\otimes Q
and
(x)—>(x) \otimes Q—>G\otimes Q
In HTML, text contained within angle brackets is interpreted as markup. You have to write < and > to get < and >
And I don’t really see what your problem is with this proof. It gets right to the heart of the matter, that the behavior of elements under the
-action is entirely a matter of the subgroup they generate. Tensoring with
kills torsion subgroups and preserves non-torsion subgroups.
A really non-elementary proof would use something like a structure theorem for abelian groups, which this doesn’t come close to using.
Here is the proof I was looking for! (I wrote it)
If $g$ is torsion, let $n$ be the order of $g$, then $g\otimes q=ng\otimes q/n=0$. On the other hand suppose, looking for a contradiction, that $g$ is not torsion, then $\left\langle g\right\rangle\cong \Z$ and so $G\otimes_{\Z}\Q\supseteq\left\langle g\right\rangle\otimes_{\Z}\Q\cong \Q\neq 0$. Let now $ag\otimes p$, with $p\in \Q$ and $a\in\N\setminus\{0\}$, be a non-trivial element of $\left\langle g\right\rangle\otimes_{\Z}\Q$ (we can suppose that it has this form), let $p=\frac{p_1}{p_2}$ and $q=\frac{q_1}{q_2}$ with $p_1,p_2,q_1,q_2\in\Z\setminus \{0\}$, then
$$ag\otimes p=ap_2q_1g\otimes \frac{1}{p_2q_2} \ \ \Rightarrow \ \ 0\neq ap_2q_1(g\otimes q)=a(g\otimes \frac{q_1}{q_2})=a(g\otimes q)$$
and so $g\otimes q$ is non-trivial contradicting our hypothesis. Then $g$ is torsion.
Fact is not difficult to prove, it is essentially for definition of tensor product but fact 1 is less trivial. But now I see… Fact 1 is not really needed, in fact
< x > is isomorphic to Z whenever x is torsion free, then
< x > \otimes Q is isomorphic to Q because Z\otimes G=G for every abelian group G.
With this remark I like that proof:) thanks
can tensor product of two abelian groups be group?
The tensor product of two abelian groups is another abelian group, so yes.
Thank you, I needed a refresher !. Just curious: are we using the fact ( and can we use this fact) that , given free Abelian groups ( or free objects) C,D with respective bases {c_1,..,c_m} and {d_1,..,d_n}, that a bilinear map B: C x D –>E is then uniquely-defined once we know the values of { B(c_1,0),..,B(c_m,0), B(0,d_1,..B(0,d_m) }? , i.e., {(c_i,0), (0,d_j) ; i=1,..,m ; j=1,2,..,n} is a basis for C x D ? Then a bilinear map B in C x D is mapped to the linear map L in C(x)D so that L( c_i (x) d_j):= B( c_i, d_j)? SO it seems to come down to properties of multilinear algebra. Is there any analog of the tensor product when the objects are not free? Thanks, G.K.
(Sorry, hit the ‘Submit’ too quickly) and, is it accurate to say that when a function f satisfies the given relations, that the function itself passes to the quotient (I think it comes down to a relation between the kernels / zero set of the spaces in a commuting triangle)? Sorry if I’m wrong, I haven’t done this stuff in a while.
Sorry again. I meant to say the map L : C(x)D –> E factors through, so we have B((x)(m,n))= B(m(x)n)= L( C x D ) and not ‘passes to the quotient”.
Basically yes, we are using that correspondence. And yes, if a function
satisfies the bilinearity relations it factors through the quotient
. That is, we can factor
where
.
Awesome! Thank you!!
Is the first example what’s meant by a “direct sum”?
Which example do you mean? The post is about tensor products, which are not generally the same thing. A direct sum is something like the Cartesian product of two spaces (
), while a tensor product is rather different (
)
Oh sorry, I meant f( a+a′ , b+b′ ) = f(a,b) + f(a′,b′).
Yes, a function that behaves like that should factor through a function defined on the direct sum.
Cool, great explanation! Thanks!
So maybe the “easiest example” would be 11×11 = ×(10+1,10+1) = ×(10,10) + ×(10,1) + ×(1,10) + ×(1,1) = 100 + 10 + 10 + 1 = 121.