The Unapologetic Mathematician

Mathematics for the interested outsider

Shameless Self-Promotion

If anything has become clearer after a year in the application trenches it is this: the better-known you and your ideas are, the better chance you have in the job market. To that end, I’d like to advertise myself.

Eventually the fall semester will start up, and with it the search for seminar speakers. Obviously I think I’d make a great choice. Here are a number of lectures I have basically ready to go.

  • Functors extending the Kauffman Bracket
    The Kauffman Bracket is a family of invariants of knots and links up to regular isotopy taking their values in commutative rings, and defined by a “skein theory”. We want to find monoidal functors defined on the category \mathcal{F}r\mathcal{T}ang of framed tangles so that if we restrict the functors to knots and links we recover (essentially) the old invariants. This approach highlights the fact that “skein theories” are actually just generating sets for monoidal categorical ideals, and that the skein-theoretic approach to knot invariants is another branch of representation theory.
    We thus study the representation theory of R-linearizations of the category of framed tangles, and of the Temperley-Lieb categories \mathcal{TL}_\delta(R). We show that the representation theory of these categories is equivalent to the theory of (non-symmetric) nondegenerate bilinear forms over R.
  • The Tangle Group
    The group of a knot or link is a well-known invariant of ambient isotopy. We would like to extend this invariant to a monoidal functor \Gamma on the category \mathcal{T}ang of tangles in such a way that when we restrict \Gamma to knots and links we recover (essentially) the old knot group.
    Here, we define a monoidal bifunctor from the bicategory of (tangles, isotopies) to the bicategory of cospans of groups, and show how the restriction of the decategorification of this bifunctor to knots and links reproduces the knot group. We also indicate how the use of cospans immediately applies to generalize the fundamental quandle of a link, the fundamental biquandle of a virtual link, and other such invariants.
  • A Categorification of Quandle Coloring Numbers by Anafunctors
    The number of colorings of a link by a given quandle is a classical invariant of links up to ambient isotopy. We would like to categorify and extend this invariant to the category \mathcal{T}ang of tangles.
    Here, we show how to associate, functorially, to each tangle an anafunctor between two comma categories of quandles. When we restrict this assignment to knots and links and specify a quandle Q of colors we recover Q-coloring invariant. If we first decategorify and specify a quandle Q of colors we recover the Q-coloring matrix of a given tangle.
    This approach can be significantly generalized. We indicate the existence of a similar “\mathcal{C}-coloring” invariant for any co-\mathcal{C} object in the category of pointed topological pairs up to homotopy.

And now some comments. Generally, these abstracts apply to the highest-level version of each talk. I can tweak any of them down a bit, mostly to adjust for familiarity of the audience with categories and with knot theory.

The Kauffman Bracket talk is probably the most straightforward. It clearly highlights the relationship between skein theory and representation theory. Its primary interest is in this connection, and in the fact that it lays the groundwork for parallel categorifications of the Kauffman Bracket to Khovanov homology.

The knot group talk should be clear to an algebraic topology audience. It’s really the genesis of the use of cospans in the study of tangles For audiences more familiar with knot theory in particular, I can do the whole thing from the get-go in quandles.

The quandle talk really isn’t that abstract when it comes down to it, but it uses a number of tools possibly unfamiliar to the general mathematical audience. In fact, a good part of it is devoted to getting the definitions down straight. Once they’re in place, the whole structure just sort of builds itself, which is how I really like my mathematics to go. The caveat, then, is that the audience really does need to either be interested in knot theory already, or somewhat familiar with and friendly towards categories. Otherwise it’s really tough to motivate the material and to cover it within the usual microcentury.

I could possibly put the latter two together in a pair of lectures, since the quandle coloring invariant is a direct outgrowth of the fundamental quandle of a tangle. That would also make it a bit easier to motivate the second half, so it may well go more smoothly as a pair to a more general audience.

So, if your department is looking to fill a slot in an algebraic topology (or “quantum topology”, as they’re calling this stuff now) seminar, let’s talk. Clearly the easier it is for me to get there from New Orleans the easier it will be to make arrangements. Also, though I’ve gotten used to paying out of pocket for these things, assistance in travel would also be helpful.

I am particularly looking for an engagement in the Baltimore/Washington D.C. area around the weekend of October 6, so that gets high priority.

May 21, 2007 Posted by | Uncategorized | Leave a comment