Limits of sets and Creation of limits
We know that the category has equalizers and all (small) products, so by the existence theorem we know it is complete. However, it will be useful to have an explicit calculation of all small limits at hand. We’ll find this by walking through the existence theorem in this category.
Given any small category , a functor
is a collection of sets
and functions
. We can take the product of all the sets in the collection
, consisting of all lists of elements
with each
. It comes with projections
, but the triangles formed by these projections might not commute —
is not equal to
in general.
So take the subset of the product consisting of all those lists
with
for all morphisms
of
. Then we have functions
defined by
which do make the required triangles commute, giving a cone on
. If
is any other cone on
then each
determines a list
which lies in
, which determines a unique function
.
Now such a list is a list of elements of the various
, and when it comes right down to it we just don’t like thinking about elements if we don’t have to. Instead of talking about an element
of a set
, we can talk about an arrow
, where
is a terminal object in
— a set with one point. So what we really have here is a list of arrows
with
, which is a cone on
!
So here’s the result of our calculation: The limit set is the set
of all cones from
to
in
. Further, we see that this set always exists, so
is complete.
We could do a similar calculation in another category like , but we actually don’t have to reproduce all this work. Instead, we can consider the functor
which assigns to every group its underlying set. If
is a functor, then the composite
has a limit
. I claim that there is a unique group structure on this set so that the arrows
are actually group homomorphisms to the groups
, and that this cone in
is a limiting cone.
Since the projection just reads off the
component from the list, we see that for it to be a homomorphism we have to use the product from
. That is,
, so the
component of the product must be
, using the product from
. Similarly the
component of
must be
, using the inversion from
.
Now if is any cone in
then
is a cone in
, so
for some unique function
. We can check that
so must also be a group homomorphism, proving the required universal property.
In general we say that a functor creates a limit for a functor
if for every limiting cone
in
there exists a unique cone
in
with
and
, and further this cone is a limiting cone. The above theorem can then be stated that the functor
creates all limits. As a consequence,
is complete.
A similar proof to the preceding theorem can be given to show that the “underlying set” functors from ,
,
,
, and other algebraic categories all create all (small) limits, and thus those categories are complete. This also shows that the group (ring, module, etc.) structure on a product (equalizer, pullback) is completely determined by the limit on the underlying sets.