The Riemann-Stieltjes Integral IV
Let’s do one more easy application of the Riemann-Stieltjes integral. We know from last Friday that when our integrator is continuously differentiable, we can reduce to a Riemann integral:
So where else have we seen derivatives as factors in integrands? Right! integration by parts! Here our formula says that
We can rewrite this using Riemann-Stieltjes integrals as
So if and
are both continuously differentiable, this formula gives back our rule for integration by parts. But we can prove this without making those assumptions. In fact, we just need to assume that one of the two integrals exists, and the existence of the other one (and the formula) will follow.
Let’s assume that exists. That is, for every
there is some tagged partition
so that for every finer partition
we have
Now let’s take any partition finer than
and use it to set up the Rieman-Stieltjes sum
We can also use this partition to rewrite as
So subtracting the one from the other we find
But this is a Riemann-Stieltjes sum for the partition
we get by throwing together all the
and
as partition points, and using
as tags. This is a finer partition than
, and so we see that
whenever is a partition finer than
. This shows that the Riemann-Stieltjes integral of
with respect to
exists, and has the value we want.
[…] is similar to the formula for integration by parts, and is referred to as Abel’s partial summation formula. In particular, it tells us that the […]
Pingback by Abel’s Partial Summation Formula « The Unapologetic Mathematician | April 30, 2008 |