Exponentials and Powers
The exponential function is, as might be expected, closely related to the operation of taking powers. In fact, any of our functions satisfying the exponential property will have a similar relation.
To this end, consider such a function and define a positive number
. Then we can calculate
,
, and so on. Since
we see that
, and similarly for all other rational numbers.
So we have a function defined on all real numbers, and we have a function
defined on all rational numbers, and where both functions are defined they agree. Since the rationals are dense in the reals (the latter being the uniform completion of the former) there can be only one continuous extension of
to the whole real line. We’ll discard the function
and just write
for this extension from now on. In particular, the function
gives us a special number
, and we write
.
Like we saw before, we can use the exponential function to give all the other exponentials
. We know that
for some constant
, but which? If we take the natural logarithm of both sides we see that
. In particular, setting
we find
. That is, given any positive real number
we can define the exponential
as
Hey John, you’ve got a parse error in the last paragraph.