Polynomials as Functions
When I set up the algebra of polynomials I was careful to specify that the element is not a “variable”, as in high school algebra. Why do I have to do that? What is the “variable” thing that we were all taught, then?
We’ve got the algebra of polynomials over the base field
. Now I’m going to define a function
called the “evaluation map”. We define
by first writing out
in terms of the standard basis
Remember here that the sum must terminate after a finite number of basis elements. Then we just stick the field element in for
to get an expression written out in the field
itself:
Now the superscripts on each must be read as exponents. This defines a particular element of the field. If we keep the polynomial
fixed and let
range over
we get a function from
to itself, which we can abuse notation to write as
. This is the notion of polynomial-as-function we were taught in high school.
But it’s actually more interesting to see what happens as we fix and let
vary over all polynomials. The map
turns out to be a homomorphism of
-algebras! Indeed, given polynomials
(the top coefficients here may be zero, and all higher coefficients definitely are) and a field element we find
I’ll let you write out the verification that it also preserves multiplication.
In practice this “evaluation homomorphism” provides a nice way of extracting information about polynomials. And considering polynomials as functions provides another valuable slice of information. But we must still keep in mind the difference between the abstract polynomial
and the field element