The Unapologetic Mathematician

Mathematics for the interested outsider

Upper-Triangular Matrices

Until further notice, I’ll be assuming that the base field \mathbb{F} is algebraically closed, like the complex numbers \mathbb{C}.

What does this assumption buy us? It says that the characteristic polynomial of a linear transformation T is — like any polynomial over an algebraically closed field — guaranteed to have a root. Thus any linear transformation T has an eigenvalue \lambda_1, as well as a corresponding eigenvector e_1 satisfying


So let’s pick an eigenvector e_1 and take the subspace \mathbb{F}e_1\subseteq V it spans. We can take the quotient space V/\mathbb{F}e_1 and restrict T to act on it. Why? Because if we take two representatives v,w\in V of the same vector in the quotient space, then w=v+ce_1. Then we find


which represents the same vector as T(v).

Now the restriction of T to V/\mathbb{F}e_1 is another linear endomorphism over an algebraically closed field, so its characteristic polynomial must have a root, and it must have an eigenvalue \lambda_2 with associated eigenvector e_2. But let’s be careful. Does this mean that e_2 is an eigenvector of T? Not quite. All we know is that


since vectors in the quotient space are only defined up to multiples of e_1.

We can proceed like this, pulling off one vector e_i after another. Each time we find


The image of e_i in the ith quotient space is a constant times e_i itself, plus a linear combination of the earlier vectors. Further, each vector is linearly independent of the ones that came before, since if it weren’t, then it would be the zero vector in its quotient space. This procedure only grinds to a halt when the number of vectors equals the dimension of V, for then the quotient space is trivial, and the linearly independent collection \{e_i\} spans V. That is, we’ve come up with a basis.

So, what does T look like in this basis? Look at the expansion above. We can set t_i^j=c_{i,j} for all i<j. When i=j we set t_i^i=\lambda_i. And in the remaining cases, where i^gt;j, we set t_i^j=0. That is, the matrix looks like


Where the star above the diagonal indicates unknown matrix entries, and the zero below the diagonal indicates that all the entries in that region are zero. We call such a matrix “upper-triangular”, since the only nonzero entries in the matrix are on or above the diagonal. What we’ve shown here is that over an algebraically-closed field, any linear transformation has a basis with respect to which the matrix of the transformation is upper-triangular. This is an important first step towards classifying these transformations.

February 2, 2009 - Posted by | Algebra, Linear Algebra


  1. […] a vector space over an algebraically-closed field has a basis with respect to which its matrix is upper-triangular. That is, it looks […]

    Pingback by The Determinant of an Upper-Triangular Matrix « The Unapologetic Mathematician | February 3, 2009 | Reply

  2. […] pick a basis and associate a matrix to each of these linear transformations. It turns out that the upper-triangular matrices form a […]

    Pingback by The Algebra of Upper-Triangular Matrices « The Unapologetic Mathematician | February 5, 2009 | Reply

  3. […] Even better than upper-triangular matrices are diagonal matrices. These ones look […]

    Pingback by Diagonal Matrices « The Unapologetic Mathematician | February 9, 2009 | Reply

  4. […] matrix is upper-triangular, and so we can just read off its eigenvalues from the diagonal: two copies of the eigenvalue . We […]

    Pingback by Repeated Eigenvalues « The Unapologetic Mathematician | February 11, 2009 | Reply

  5. […] generally, consider a strictly upper-triangular matrix, all of whose diagonal entries are zero as […]

    Pingback by Generalized Eigenvectors « The Unapologetic Mathematician | February 16, 2009 | Reply

  6. […] capture the right notion. In that example, the -eigenspace has dimension , but it seems from the upper-triangular matrix that the eigenvalue should have multiplicity […]

    Pingback by The Multiplicity of an Eigenvalue « The Unapologetic Mathematician | February 19, 2009 | Reply

  7. […] to is the multiplicity of , which is the number of times shows up on the diagonal of an upper-triangular matrix for . Since the total number of diagonal entries is , we see that the dimensions of all the […]

    Pingback by Jordan Normal Form « The Unapologetic Mathematician | March 4, 2009 | Reply

  8. […] polynomial had a root. Applying this to the characteristic polynomial of a linear transformation, we found that it must have a root, which would be definition be an eigenvalue of the transformation. There […]

    Pingback by Real Invariant Subspaces « The Unapologetic Mathematician | March 31, 2009 | Reply

  9. […] Upper-Triangular Matrices Over an algebraically closed field we can always find an upper-triangular matrix for any linear endomorphism. Over the real numbers we’re not quite so lucky, but we can come […]

    Pingback by Almost Upper-Triangular Matrices « The Unapologetic Mathematician | April 1, 2009 | Reply

  10. […] be a linear map from to itself. Further, let be a basis with respect to which the matrix of is upper-triangular. It turns out that we can also find an orthonormal basis which also gives us an upper-triangular […]

    Pingback by Upper-Triangular Matrices and Orthonormal Bases « The Unapologetic Mathematician | May 8, 2009 | Reply

  11. no need of such material

    Comment by shasha | May 21, 2009 | Reply

  12. Oh I’m so sorry that I chose to cover a topic you see as unnecessary. I’ll be sure to run all my future topics by you first.

    Comment by John Armstrong | May 21, 2009 | Reply

    • Useful article. Many books just prove this by induction without any explanation

      Comment by vish | October 26, 2013 | Reply

  13. Surely in the first equation you meant to write
    T(e_1) = lambda_1 * e_1

    (instead of T(v) on LHS)

    Comment by A Khan | June 17, 2009 | Reply

  14. Yes, sorry. Thanks for catching that.

    Comment by John Armstrong | June 17, 2009 | Reply

  15. […] with a complex transformation we’re done. We can pick a basis so that the matrix for is upper-triangular, and then its determinant is the product of its eigenvalues. Since the eigenvalues are all […]

    Pingback by The Determinant of a Positive-Definite Transformation « The Unapologetic Mathematician | August 3, 2009 | Reply

  16. […] Self-Adjoint Transformation has an Eigenvector Okay, this tells us nothing in the complex case, but for real transformations we have no reason to assume that a given […]

    Pingback by Every Self-Adjoint Transformation has an Eigenvector « The Unapologetic Mathematician | August 12, 2009 | Reply

  17. […] nilpotent transformation, so all of its eigenvalues are . Specifically, we want those that are also upper-triangular. Thus the matrices we’re talking about have everywhere below the diagonal and all on the […]

    Pingback by Subgroups Generated by Shears « The Unapologetic Mathematician | August 28, 2009 | Reply

  18. […] in a given row is to the right of the leftmost nonzero entry in the row above it. For example, an upper-triangular matrix is in row echelon form. We put a matrix into row echelon form by a method called […]

    Pingback by Row Echelon Form « The Unapologetic Mathematician | September 1, 2009 | Reply

  19. […] the difference between and is some scalar multiple of . On the other hand, remember how we found upper-triangular matrices before. This time we peeled off one vector and the remaining transformation was the identity on the […]

    Pingback by A Lemma on Reflections « The Unapologetic Mathematician | January 19, 2010 | Reply

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: