The Unapologetic Mathematician

Mathematics for the interested outsider

Nondegenerate Forms I

The notion of a positive semidefinite form opens up the possibility that, in a sense, a vector may be “orthogonal to itself”. That is, if we let H be the self-adjoint transformation corresponding to our (conjugate) symmetric form, we might have a nonzero vector v such that \langle v\rvert H\lvert v\rangle=0. However, the vector need not be completely trivial as far as the form is concerned. There may be another vector w so that \langle w\rvert H\lvert v\rangle\neq0.

Let us work out a very concrete example. For our vector space, we take \mathbb{R}^2 with the standard basis, and we’ll write the ket vectors as columns, so:


Then we will write the bra vectors as rows — the transposes of ket vectors:


If we were working over a complex vector space we’d take conjugate transposes instead, of course. Now it will hopefully make the bra-ket and matrix connection clear if we note that the bra-ket pairing now becomes multiplication of the corresponding matrices. For example:


The bra-ket pairing is exactly the inner product we get by declaring our basis to be orthonormal.

Now let’s insert a transformation between the bra and ket to make a form. Specifically, we’ll use the one with the matrix S=\begin{pmatrix}0&1\\1&0\end{pmatrix}. Then the basis vector \lvert1\rangle is just such a one of these vectors “orthogonal” to itself (with respect to our new bilinear form). Indeed, we can calculate

\displaystyle\langle1\rvert S\lvert1\rangle=\begin{pmatrix}1&0\end{pmatrix}\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}1\\{0}\end{pmatrix}=\begin{pmatrix}1&0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}0\end{pmatrix}

However, this vector is not totally trivial with respect to the form S. For we can calculate

\displaystyle\langle2\rvert S\lvert1\rangle=\begin{pmatrix}0&1\end{pmatrix}\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}1\\{0}\end{pmatrix}=\begin{pmatrix}0&1\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}1\end{pmatrix}

Now, all this is prologue to a definition. We say that a form B (symmetric or not) is “degenerate” if there is some non-zero ket vector \lvert v\rangle so that for every bra vector \langle w\rvert we find

\displaystyle\langle w\rvert B\lvert v\rangle=0

And, conversely, we say that a form is “nondegenerate” if for every ket vector \lvert v\rangle there exists some bra vector \langle w\rvert so that

\displaystyle\langle w\rvert B\lvert v\rangle\neq0

July 15, 2009 - Posted by | Algebra, Linear Algebra


  1. “We say that a form (symmetric or not) is “degenerate” if there is some ket vector ”

    Do you want to say non-zero ket vector?

    Comment by Johan Richter | July 19, 2009 | Reply

  2. Yes, sorry. I caught this in the next post, but didn’t here.

    Comment by John Armstrong | July 19, 2009 | Reply

  3. […] the orthogonal groups. This covers orthogonality with respect to general (nondegenerate) forms on an inner product space , the special case of orthogonality with respect to the underlying […]

    Pingback by The Determinant of Unitary and Orthogonal Transformations « The Unapologetic Mathematician | July 31, 2009 | Reply

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: