Product Measurable Spaces
Now we return to the category of measurable spaces and measurable functions, and we discuss product spaces. Given two spaces and
, we want to define a
-ring of measurable sets on the product
.
In fact, we’ve seen that given rings and
we can define the product
as the collection of finite disjoint unions of sets
, where
and
. If
and
are
-rings, then we define
to be the smallest monotone class containing this collection, which will then be a
-ring. If
and
are
-algebras — that is, if
and
— then clearly
, which is thus another
-algebra.
Indeed, is a measurable space. The collection
is a
-algebra, and every point is in some one of these sets. If
, then
and
, so
. But is this really the
-algebra we want?
Most approaches to measure theory simply define this to be the product of two measurable spaces, but we have a broader perspective here. Indeed, we should be asking if this is a product object in the category of measurable spaces! That is, the underlying space comes equipped with projection functions
and
. We must ask if these projections are measurable for our choice of
-algebra, and also that they satisfy the universal property of a product object.
Checking measurability is pretty straightforward. It’s the same for either projector, so we’ll consider explicitly. Given a measurable set
, the preimage
must be measurable as well. And here we run into a snag: we know that
is measurable, and so for any measurable
the subset
is measurable. In particular, if
is a
-algebra then
is measurable right off. However, if
is not itself measurable then
is not the limit of any increasing countable sequence of measurable sets either (since
-rings are monotonic classes). Thus
is not the limit of any increasing sequence of measurable products
, and so
can’t be in the smallest monotonic class generated by such products, and thus can’t be measurable!
So in order for to be a product object, it’s necessary that
be a
-algebra. Similarly,
must be a
-algebra as well. What would happen if this condition fails? Consider a measurable function
defined by
. We can write
, but since
is not measurable we have no guarantee that
will be measurable!
On the other hand, all is not lost; if and
are both measurable, and if
and
, then we calculate the preimage
which is thus measurable. Monotone limits of finite disjoint unions of such sets are easily handled. Thus if both components of are measurable, then
is measurable.
Okay, so back to the case where and
are both
-algebras, and so
and
are both measurable. We still need to show that the universal property holds. That is, given two measurable functions
and
, we must show that there exists a unique measurable function
so that
and
. There’s obviously a unique function on the underlying set:
. And the previous paragraph shows that this function must be measurable!
So, the uniqueness property always holds, but with the one caveat that the projectors may not themselves be measurable. That is, the full subcategory of total measurable spaces has product objects, but the category of measurable spaces overall does not. However, we’ll still talk about the “product” space with the
-ring
understood.
A couple of notes are in order. First of all, this is the first time that we’ve actually used the requirement that every point in a measurable space be a member of some measurable set or another. It will become more important as we go on. Secondly, we define a “measurable rectangle” in to be a set
so that
and
— that is, one for which both “sides” are measurable. The class of all measurable sets
is the
-ring generated by all the measurable rectangles.
[…] I’ve been thinking about yesterday’s post about the product of measurable spaces, and I’m not really satisfied. I’d like to present a concrete example of what can go […]
Pingback by A Counterexample « The Unapologetic Mathematician | July 16, 2010 |
[…] With these definitions down, we turn to measure theory. Let and be measurable spaces, and let be the product space. […]
Pingback by Sections of Sets and Functions « The Unapologetic Mathematician | July 19, 2010 |
[…] on Product Spaces After considering the product of measurable spaces, let’s consider what happens if our spaces are actually equipped with measures. That is, let […]
Pingback by Measures on Product Spaces « The Unapologetic Mathematician | July 22, 2010 |
[…] We continue as yesterday, considering the two -finite measure spaces and , and the product measure space […]
Pingback by Product Measures « The Unapologetic Mathematician | July 23, 2010 |
[…] Products, Part 1 Because we know that product spaces are product objects in the category of measurable spaces — at least for totally measurable […]
Pingback by Infinite Products, Part 1 « The Unapologetic Mathematician | July 29, 2010 |