Garnir Elements from Tableaux
There are, predictably enough, certain Garnir elements we’re particularly interested in. These come from Young tableaux, and will be useful to us as we move forward.
Given a tableau , let
be a subset of the entries in the
th column of
, and let
be a subset of the entries in the
st column. We can come up with Garnir elements associated to this choice of
and
, but — as we pointed out last time — we need some way of picking which particular transversal elements to use. For each summand in
, we separate
into a pair of sets
, but we have flexibility in how we order the elements of
and
. Our answer in this case is to always pick the permutation that puts the elements of
into increasing order as we move down the columns of
.
For example, consider the tableau
This tableau has a “row descent” in the second row: a pair of adjacent entries in the row where the larger entry is on the left instead of the right. Let be the entry on the left along with all the entries below it in its column —
— and let
be the entry on the right along with all the entries above it in its column —
. We look at all six ways of rearranging the collection
into two subsets of two elements each (we listed then last time, actually) and choose permutations that keep entries in increasing order as we move down the columns.
Notice that we’ve picked different permutations this time, and so we get a different Garnir element:
Also, note that only the first of these tableaux has the descent in the second row, although some now have descents in the first row. Slightly less obvious is the fact that , and so we can write
Thus we can rewrite this polytabloid that has a row descent in terms of a bunch of other polytabloids that don’t have it and are “more standard”, in a sense we’ll define later.
Garnir Elements
Let and
be two disjoint sets of positive integers. We’re mostly interested in the symmetric group
, which shuffles around all the integers in both sets. But a particularly interesting subgroup is
, which shuffles around the integers in
and
, but doesn’t mix the two together. Clearly,
is a subgroup of
.
Now, let be a transversal collection of permutations for this subgroup. That is, we can decompose the group into cosets
Then a “Garnir element” is
Now, the problem here is that we’ve written as if it only depends on the sets
and
, when it clearly depends on the choice of the transversal
. But we’ll leave this alone for the moment.
How can we come up with an explicit transversal in the first place? Well, consider the set of pairs of sets so that
,
, and
. That is, each
is another way of breaking the same collection of integers up into two parts of the same sizes as
and
.
Any permutation acts on the collection of such pairs of sets in the obvious way, sending
to
, which is another such pair. In fact, it’s transitive, since we can always find some
with
and
. If for each
we make just such a choice of
, then this collection of permutations gives us a transversal!
We can check this by first making sure we have the right number of elements. A pair is determined by taking all
integers and picking
to go into
. That is, we have
pairs. But this is also the number of cosets of in
!
Do we accidentally get two representatives and
for the same coset? If we did, then we’d have to have
. But then
, and thus
. But we only picked one permutation sending
to a given pair, so
.
As an example, let and
. Then we have six pairs of sets to consider
where in each case I’ve picked a that sends
to
. This will give us the following Garnir element:
But, again, this is far from the only possible choice for this and
.
Standard Polytabloids are Independent
Now we’re all set to show that the polytabloids that come from standard tableaux are linearly independent. This is half of showing that they form a basis of our Specht modules. We’ll actually use a lemma that applies to any vector space with an ordered basis
. Here
indexes some set
of basis vectors which has some partial order
.
So, let be vectors in
, and suppose that for each
we can pick some basis vector
which shows up with a nonzero coefficient in
subject to the following two conditions. First, for each
the basis element
should be the maximum of all the basis vectors having nonzero coefficients in
. Second, the
are all distinct.
We should note that the first of these conditions actually places some restrictions on what vectors the can be in the first place. For each one, the collection of basis vectors with nonzero coefficients must have a maximum. That is, there must be some basis vector in the collection which is actually bigger (according to the partial order
) than all the others in the collection. It’s not sufficient for
to be maximal, which only means that there is no larger index in the collection. The difference is similar to that between local maxima and a global maximum for a real-valued function.
This distinction should be kept in mind, since now we’re going to shuffle the order of the so that
is maximal among the basis elements
. That is, none of the other
should be bigger than
, although some may be incomparable with it. Now I say that
cannot have a nonzero coefficient in any other of the
. Indeed, if it had a nonzero coefficient in, say,
, then by assumption we would have
, which contradicts the maximality of
. Thus in any linear combination
we must have , since there is no other way to cancel off all the occurrences of
. Removing
from the collection, we can repeat the reasoning with the remaining vectors until we get down to a single one, which is trivially independent.
So in the case we care about the space is the Young tabloid module , with the basis of Young tabloids having the dominance ordering. In particular, we consider for our
the collection of polytabloids
where
is a standard tableau. In this case, we know that
is the maximum of all the tabloids showing up as summands in
. And these standard tabloids are all distinct, since they arise from distinct standard tableaux. Thus our lemma shows that not only are the standard polytabloids
distinct, they are actually linearly independent vectors in
.
The Maximality of Standard Tableaux
Standard tableaux have a certain maximality property with respect to the dominance order on tabloids. Specifically, if is standard and
appears as a summand in the polytabloid
, then
.
Any such comes from
, where
. We will make our induction on the number of “column inversions” in
. That is, the number of pairs of entries
that are in the same column of
, but which are “out of order”, in the sense that
is in a lower row than
.
Given any such pair, the dominance lemma tells us that . That is, by “untwisting” the column inversion, we can move up the dominance order while preserving the columns. It should also be clear that
has fewer column inversions than
does. But if we undo all the column inversions, the tableau we’re left with must be standard. That is, it must be
itself.
The Dominance Lemma for Tabloids
If , and
appears in a lower row than
in the Young tabloid
, then
dominates
. That is, swapping two entries of
so as to move the lower number to a higher row moves the tabloid up in the dominance relations.
Let the composition sequences of and
be
and
, respectively. For
and
we automatically have
. For
there is a difference between the two: the entry
has been added in a different place. Let
and
be in rows
and
of
, respectively. In
, the entry
is added to row
, while in
it’s been added to row
. That is,
is the same as
with part
increased by one and part
decreased by one. Our assumption that
is in a lower row than
in
is that
. Therefore, since the lower row in
is less than in
, we find that
. And we conclude that
, as asserted.
The Dominance Order on Tabloids
Sorry, this should have gone up last Friday.
If is a Young tabloid with shape
, we can define tabloids
for each
from
to
by letting
be formed by the entries in
less than or equal to
. We define
to be the shape of
as a composition. For example, if we have
then we define
Along the way we see why we might want to consider a composition like with a zero part.
Anyway, now we define a dominance order on tabloids. If and
are two tabloids with composition sequences
and
, respectively, then we say
“dominates”
— and we write
— if
dominates
for all
.
As a (big!) example, we can write down the dominance order on all tabloids of shape :
It’s an exercise to verify that these are indeed all the tabloids with this shape. For each arrow, we can verify the dominance. As an example, let’s show that
First, let’s write down their composition sequences:
Now it should be easy to see on each row that . As another example, let’s try to compare
and
. Again, we write down their composition sequences:
We see that , but
. Thus neither tabloid dominates the other. The other examples to verify this diagram are all similarly straightforward.
Compositions
A “composition” is sort of like a partition, except the parts are allowed to come in any specified order. That is, a composition of is an ordered sequence of nonnegative integers
that sums up to
. Every partition is a composition — specifically one in which the sequence is nonincreasing. Since a general composition allows its parts to increase, it’s possible that some of the
are zero, which can’t really happen for partitions.
The notions of Ferrers diagrams and Young tableaux, and Young tabloids carry over right away to compositions. For instance, the Ferrers diagram of the composition is
and one possible Young tableau with this shape is
Now, it should be made clear that this is not a standard tableau, despite the fact that the rows and columns increase. The usual line is that we imagine the tableau to be at the upper-left corner of a quarter-plane, so there are cells extending out to the right and bottom of the diagram that aren’t part of the tableau. These, we say, are all filled with , and so the second column of this particular tableau is “actually”
, so it doesn’t actually increase after all. But as far as I can tell this is a lot of word salad designed to back up the definition we really want: the notion of standard Young tableaux only applies to partitions, not to compositions in general.
We can, however, extend the idea of the dominance order to general compositions. As usual we say that if
for all . We just don’t have to add up all the biggest parts first.
Standard Tableaux
So we’ve described the Specht modules, and we’ve shown that they give us a complete set of irreducible representations for the symmetric groups. But we haven’t described them very explicitly, and we certainl can’t say much about them. There’s still work to be done.
We say that a Young tableau is “standard” if its rows and columns are all increasing sequences. In this case, we also say that the Young tabloid
and the polytabloid
are standard.
Recall that we had a canonical Young tableau for each shape that listed the numbers from
to
in each row from top to bottom, as in
It should be clear that this canonical tableau is standard, so there is always at least one standard tableau for each shape. There may be more, of course. For example:
Clearly, any two distinct standard tableaux and
give rise to distinct tabloids
and
. Indeed, if
, then
and
would have to be row-equivalent. But only one Young tableau in any row-equivalence class has increasing rows, and only that one even has a chance to be standard. Thus if
and
are row-equivalent standard tableaux, they must be equal.
What’s not immediately clear is that the standard polytabloids and
are distinct. Further, it turns out that the collection of standard polytabloids
of shape
is actually independent, and furnishes a basis for the Specht module
. This is our next major goal.
Consequences of the Submodule Theorem
We have a number of immediate consequences of the submodule theorem. First, and most important, the Specht modules form a complete list of irreducible modules for the symmetric group . We know that they’re irreducible, and that there’s one of them for each partition
, which is the number of modules we’re looking for. But we need to show that the Specht modules corresponding to distinct partitions are themselves distinct. For this, we’ll use a lemma.
If is a nonzero intertwinor, then
. Further, if
, then
must be multiplication by a scalar. Indeed, since
there must be some polytabloid
with
. We decompose
, and extent
to all of
by sending every vector in
to
. That is:
where the are
-tableaux. Now, the
can’t all be zero, so we must have at least one
-tableau
so that
. But then our corollary of the sign lemma tells us that
, as we asserted!
Further, if , then our other corollary shows us that
for some scalar
. We can thus calculate
and so multiplies every vector by
.
As a consequence, the must be distinct for distinct permutations, since if
then there is a nonzero homomorphism
, and thus
. But the same argument shows that
, and thus
.
More particularly, we have a decomposition
where the diagonal multiplicities are . The rest of these multiplicities will eventually have a nice interpretation.
The Submodule Theorem
Sorry for the delay.
Let be a submodule of one of the Young tabloid modules. Then I say that either
contains the Specht module
, or it is contained in the orthogonal complement
. In particular, each Specht module
is irreducible, since any nontrivial submodule
cannot be contained in the orthogonal complement, and so it must also contain — and thus be equal to —
.
To see this, let be any vector, and let
be a
-tableau. Our last result showed us that
for some
. First, we’ll assume that there is some pair of
and
so that
. In this case,
. Since
generates all of
— the Specht modules are cyclic — we must have
.
On the other hand, what if there is no such pair of and
? That is,
for all vectors
and
-tableaux
. We can calculate
So each vector is orthogonal to each polytabloid
. Since the polytabloids span
, we must have
.