The Unapologetic Mathematician

Mathematics for the interested outsider

De Rham Cohomology is Functorial

It turns out that the de Rham cohomology spaces are all contravariant functors on the category of smooth manifolds. We’ve even seen how it acts on smooth maps. All we really need to do is check that it plays nice with compositions.

So let’s say we have smooth maps f:M_1\to M_2 and g:M_2\to M_3, which give rise to pullbacks f^*:\Omega(M_2)\to\Omega(M_1) and g^*:\Omega(M_3)\to\Omega(M_2). All we really have to do is show that g^*\circ f^*=(f\circ g)^*, because we already know that passing from chain maps to the induced maps on homology is functorial.

As usual, we calculate:

\displaystyle\begin{aligned}\left[\left[\left[g^*\circ f^*\right](\omega)\right](p)\right](v_1,\dots,v_k)&=\left[\left[g^*(f^*\omega)\right](p)\right](v_1,\dots,v_k)\\&=\left[\left[f^*\omega\right](g(p))\right](g_*v_1,\dots,g_*v_k)\\&=\left[\omega(f(g(p)))\right](f_*g_*v_1,\dots,f_*g_*v_k)\\&=\left[\omega(\left[f\circ g\right](p))\right]((f\circ g)_*v_1,\dots,(f\circ g)_*v_k)\\&=\left[\left[(f\circ g)^*\omega\right](p)\right](v_1,\dots,v_k)\end{aligned}

as asserted. And so we get maps f^*=H^k(f):H^k(M_2)\to H^k(M_1) and g^*=H^k(f):H^k(M_3)\to H^k(M_2) which compose appropriately: H^k(g)\circ H^k(f)\to H^k(f\circ g).

July 23, 2011 - Posted by | Differential Topology, Topology

1 Comment »

  1. […] We know that a map induces a chain map , which induces a map on the de Rham cohomology. This is what we mean when we say that de Rham cohomology is functorial. […]

    Pingback by Homotopic Maps Induce Identical Maps On Homology « The Unapologetic Mathematician | December 6, 2011 | Reply

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Get every new post delivered to your Inbox.

Join 436 other followers

%d bloggers like this: