## Line Integrals

We now define some particular kinds of integrals as special cases of our theory of integrals over manifolds. And the first such special case is that of a line integral.

Consider an oriented curve in the manifold . We know that this is a singular -cube, and so we can pair it off with a -form . Specifically, we pull back to on the interval and integrate.

More explicitly, the pullback is evaluated as

That is, for a , we take the value of the -form at the point and the tangent vector and pair them off. This gives us a real-valued function which we can integrate over the interval.

So, why do we care about this particularly? In the presence of a metric, we have an equivalence between -forms and vector fields . And specifically we know that the pairing is equal to the inner product — this is how the equivalence is defined, after all. And thus the line integral looks like

Often the inner product is written with a dot — usually called the “dot product” of vectors — in which case this takes the form

We also often write as a “vector differential-valued function”, in which case we can write

Of course, we often parameterize a curve by a more general interval than , in which case we write

This expression may look familiar from multivariable calculus, where we first defined line integrals. We can now see how this definition is a special case of a much more general construction.

## The Codifferential

From our calculation of the square of the Hodge star we can tell that the star operation is invertible. Indeed, since — applying the star twice to a -form in an -manifold with metric is the same as multiplying it by and the determinant of the matrix of — we conclude that .

With this inverse in hand, we will define the “codifferential”

The first star sends a -form to an -form; the exterior derivative sends it to an -form; and the inverse star sends it to a -form. Thus the codifferential goes in the opposite direction from the differential — the exterior derivative.

Unfortunately, it’s not quite as algebraically nice. In particular, it’s not a derivation of the algebra. Indeed, we can consider and in and calculate

while

but there is no version of the Leibniz rule that can account for the second and third terms in this latter expansion. Oh well.

On the other hand, the codifferential is (sort of) the adjoint to the differential. Adjointness would mean that if is a -form and is a -form, then

where these inner products are those induced on differential forms from the metric. This doesn’t quite hold, but we can show that it does hold “up to homology”. We can calculate their difference times the canonical volume form

which is an exact -form. It’s not quite as nice as equality, but if we pass to De Rham cohomology it’s just as good.