Plane Waves
We’ve derived a “wave equation” from Maxwell’s equations, but it’s not clear what it means, or even why this is called a wave equation. Let’s consider the abstracted form, which both electric and magnetic fields satisfy:
where is the “Laplacian” operator, defined on scalar functions by taking the gradient followed by the divergence, and extended linearly to vector fields. If we have a Cartesian coordinate system — and remember we’re working in good, old
so it’s possible to pick just such coordinates, albeit not canonically — we can write
where is the
-component of
, and a similar equation holds for the
and
components as well. We can also write out the Laplacian in terms of coordinate derivatives:
Let’s simplify further to just consider functions that depend on and
, and which are constant in the
and
directions:
We can take this big operator and “factor” it:
Any function which either “factor” sends to zero will be a solution of the whole equation. We find solutions like
where and
are pretty much any function that’s at least mildly well-behaved.
We call solutions of the first form “right-moving”, for if we view as time and watch as it increases, the “shape” of
stays the same; it just moves in the increasing
direction. That is, at time
we see the same thing at
that we saw at
—
units to the left — at time
. Similarly, we call solutions of the second form “left-moving”. In each family, solutions propagate at a rate of
, which was the constant from our original equation. Any solution of this simplified, one-dimensional wave equation will be the sum of a right-moving and a left-moving term.
More generally, for the three-dimensional version we have “plane-wave” solutions propagating in any given direction we want. We could do a big, messy calculation, but note that if is any unit vector, we can pick a Cartesian coordinate system where
is the unit vector in the
direction, in which case we’re back to the right-moving solutions from above. And of course there’s no reason we can’t let
be a vector-valued function. Such a solution looks like
The bigger is, the further in the
direction the position vector
must extend to compensate; the shape
stays the same, but moves in the direction of
with a velocity of
.
It will be helpful to work out some of the basic derivatives of such solutions. Time is easy:
Spatial derivatives are a little trickier. We pick a Cartesian coordinate system to write:
We don’t really want to depend on coordinates, so luckily it’s easy enough to figure out:
which will make our lives much easier to have worked out in advance.
[…] we’ve derived the wave equation from Maxwell’s equations, and we have worked out the plane-wave solutions. But there’s more to Maxwell’s equations than just the wave equation. Still, […]
Pingback by The Propagation Velocity of Electromagnetic Waves « The Unapologetic Mathematician | February 9, 2012 |
[…] look at another property of our plane wave solutions of Maxwell’s equations. Specifically, we’ll assume that the electric and magnetic […]
Pingback by Polarization of Electromagnetic Waves « The Unapologetic Mathematician | February 10, 2012 |
[…] Plane Waves « The Unapologetic MathematicianFeb 8, 2012 … Plane Waves. We’ve derived a “wave equation” from Maxwell’s equations, but it’s not clear what it means, or even why this is called a wave … […]
Pingback by Plane wave | Ajaygoud | April 2, 2012 |