## A Continued Rant on Electromagnetism Texts and the Pedagogy of Science

A comment just came in on my short rant about electromagnetism texts. Dripping with condescension, it states:

Here’s the fundamental reason for your discomfort: as a mathematician, you don’t realize that scalar and vector potentials have *no physical significance* (or for that matter, do you understand the distinction between objects of physical significance and things that are merely convenient mathematical devices?).

It really doesn’t matter how scalar and vector potentials are defined, found, or justified, so long as they make it convenient for you to work with electric and magnetic fields, which *are* physical (after all, if potentials were physical, gauge freedom would make no sense).

On rare occasions (e.g. Aharonov-Bohm effect), there’s the illusion that (vector) potential has actual physical significance, but when you realize it’s only the *differences* in the potential, it ought to become obvious that, once again, potentials are just mathematically convenient devices to do what you can do with fields alone.

P.S. We physicists are very happy with merely achieving self-consistency, thankyouverymuch. Experiments will provide the remaining justification.

The thing is, none of that changes the fact that you’re flat-out lying to students when you say that the vanishing divergence of the magnetic field, on its own, implies the existence of a vector potential.

I think the commenter is confusing my complaint with a different, more common one: the fact that potentials are not uniquely defined as functions. But I actually don’t have a problem with that, since the same is true of any antiderivative. After all, what is an antiderivative but a potential function in a one-dimensional space? In fact, the concepts of torsors and gauge symmetries are intimately connected with this indefiniteness.

No, my complaint is that physicists are sloppy in their teaching, which they sweep under the carpet of agreement with certain experiments. It’s trivial to cook up magnetic fields in non-simply-connected spaces which satisfy Maxwell’s equations and yet have no globally-defined potential at all. It’s not just that a potential is only defined up to an additive constant; it’s that when you go around certain loops the value of the potential must have changed, and so at no point can the function take any “self-consistent” value.

In being so sloppy, physicists commit the sin of making unstated assumptions, and in doing so in front of kids who are too naïve to know better. A professor may know that this is only true in spaces without holes, but his students probably don’t, and they won’t until they rely on the assumption in a case where it doesn’t hold. That’s really all I’m saying: state your assumptions; unstated assumptions are anathema to science.

As for the physical significance of potentials, I won’t even bother delving into the fact that explaining Aharonov-Bohm with fields alone entails chucking locality right out the window. Rest assured that once you move on from classical electromagnetism to quantum electrodynamics and other quantum field theories, the potential is clearly physically significant.