The Unapologetic Mathematician

Mathematics for the interested outsider

Back to the Example

Let’s go back to our explicit example of L=\mathfrak{sl}(2,\mathbb{F}) and look at its Killing form. We first recall our usual basis:

\displaystyle\begin{aligned}x&=\begin{pmatrix}0&1\\ 0&0\end{pmatrix}\\y&=\begin{pmatrix}0&0\\1&0\end{pmatrix}\\h&=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}\end{aligned}

which lets us write out matrices for the adjoint action:

\displaystyle\begin{aligned}\mathrm{ad}(x)&=\begin{pmatrix}0&0&-2\\ 0&0&0\\ 0&1&0\end{pmatrix}\\\mathrm{ad}(y)&=\begin{pmatrix}0&0&0\\ 0&0&2\\-1&0&0\end{pmatrix}\\\mathrm{ad}(h)&=\begin{pmatrix}2&0&0\\ 0&-2&0\\ 0&0&0\end{pmatrix}\end{aligned}

and from here it’s easy to calculate the Killing form. For example:

\displaystyle\begin{aligned}\kappa(x,y)&=\mathrm{Tr}\left(\mathrm{ad}(x)\mathrm{ad}(x)\right)\\&=\mathrm{Tr}\left(\begin{pmatrix}0&0&-2\\ 0&0&0\\ 0&1&0\end{pmatrix}\begin{pmatrix}0&0&0\\ 0&0&2\\-1&0&0\end{pmatrix}\right)\\&=\mathrm{Tr}\left(\begin{pmatrix}2&0&0\\ 0&0&0\\ 0&0&2\end{pmatrix}\right)\\&=4\end{aligned}

We can similarly calculate all the other values of the Killing form on basis elements.


So we can write down the matrix of \kappa:

\displaystyle\begin{pmatrix}0&4&0\\4&0&0\\ 0&0&8\end{pmatrix}

And we can test this for degeneracy by taking its determinant to find -128. Since this is nonzero, we conclude that \kappa is nondegenerate, which we know means that \mathfrak{sl}(2,\mathbb{F}) is semisimple — at least in fields where 1+1\neq0.

September 7, 2012 - Posted by | Algebra, Lie Algebras

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: