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Abstract

Coloring numbers are one of the simplest combinatorial invariants of
knots and links to describe. And with Joyce’s introduction of quandles,
we can understand them more algebraically. But can we extend these
invariants to tangles – knots and links with free ends? Indeed we can,
once we categorify.

Starting from the definition of coloring numbers, we will categorify
them and establish this extension to tangles. Then, decategorifying will
leave us with matrix representations of the monoidal category of tangles.

1 Introduction

With the rise of topological methods to provide fault-tolerance in quantum
computation[8, 5, 9] comes the need to turn knot theory into representation
theory. Every computation is actually approximating a topological invariant of
the knotted paths anyons follow, and every knot invariant should give a quantum
computer.

But we cannot simply consider these as invariants of knots. Computations
take place through time, and we must be able to understand what happens in
the first half of a computation as separate from what happens in the second
half. When we consider less than the complete run of a topological quantum
computer we do not find neatly knotted paths of anyons, but rather a loose
collection of tangled paths with free ends hanging out at the beginning and end
of the computation.

Thus we must consider tangles[6] as a natural generalization of knots and
links, and a simpler one for the purposes of topological quantum computation.
To describe a topological quantum computer corresponding to a tangle we must
select one transition matrix for each of four simple generating tangles, subject
to a short list of conditions. That is, we must define a matrix representation
of the category T ang of tangles. This specifies not only the evolution of the
computer’s state as we move anyons around each other, but also the initial
conditions and the measurements to be performed as we pair them off.

And so quantum computation requires us to consider the representation
theory of tangles, and to think of knot invariants as restrictions of these repre-
sentations.
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In this paper we will lay out this picture for a particularly simple combi-
natorial invariant of knots and links: the number of colorings of a link by a
given involutory quandle. We will then categorify these invariants in order to
extend them to the category of tangles. Finally, we degategorify the extended
invariants to find our matrix representations.

Acknowledgements

I am deeply indebted to the input and advice of John Baez and J. Scott Carter
on the preliminary versions of this paper, and to Sam Lomonaco and Louis
Kauffman in the development of these ideas.

2 Quandle Coloring Numbers

2.1 Quandles

A “quandle”, first defined by Joyce[7], is an algebraic structure consisting of a
set Q and two binary operations . and /. These satisfy the three conditions

Q1. For all a ∈ Q, a . a = a.

Q2. For all a, b ∈ Q, (b . a) / b = a = b . (a / b).

Q3. For all a, b, c ∈ Q, a . (b . c) = (a . b) . (a . c).

As is usual for algebraic structures, we have a notion of a “quandle homo-
morphism” f : Q1 → Q2, which is simply a function from the underlying set of
Q1 to that of Q2 which preserves the two quandle operations. We then have the
category Quan of quandles and quandle homomorphisms, which will feature
prominently in our discussion.

It is useful to keep the following quandles in mind as examples.
Given any group G, the conjugation Conj(G) with the same underlying set

as G. We define the operations by conjugation within the group:

b . a = bab−1

a / b = b−1ab

If G is abelian, then the operations in Conj(G) are trivial. But we do have
another interesting quandle structure. The dihedral quandle D(G) also has the
same underlying set as G, but we now define the two operations:

b . a = 2b− a = a / b

This quandle satisfies an additional condition

QInv. For all a, b ∈ Q, b . a = a / b

When this condition is satisfied, we say the quandle is “involutory”.
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2.2 Colorings

Given a unoriented knot or link diagram and an involutory quandle X, we color
the diagram by assigning an element of X to each arc of the diagram. When
an arc with color a meets an overcrossing arc with color b, the arc on the other
side must be colored b . a, as in figure 1.

Figure 1: Coloring arcs at a crossing

Notice here that it doesn’t matter which undercrossing arc we regard as
coming in and which we regard as going out of the crossing because we are
using an involutory quandle. The axioms QInv and Q2 tell us that

b . (b . a) = b . (b / a) = a

As it turns out, the number of colorings of a diagram for a given link by a
given involutory quandle is independent of which diagram of the link we use.
Indeed, given a coloring of a link diagram, we get a unique coloring of any link
diagram related to it by a Reidemeister move. In fact, the three quandle axioms
exactly correspond to the three Reidemeister moves, as indicated in figure 2.

Thus we have the

Theorem 2.1. For any involutory quandle X, the number of colorings of an
unoriented link diagram by X is an invariant of unoriented links.

Colorings of knot and link diagrams go back to Fox[4], who originally asked
whether or not a knot diagram had any nontrivial 3-colorings. In our language,
this is equivalent to asking whether or not the number of colorings by the quan-
dle D(Z3) is greater than 3.
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Figure 2: The quandle axioms correspond to the Reidemeister moves
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2.3 The Fundamental Involutory Quandle

Given an unoriented link diagram, we can define its fundamental involutory
quandle[11]. This is a quandle which contains exactly the relations forced by
the crossings in the diagram. It is, in a sense, “universal” for colorings.

We generate a free quandle[7] on the set of arcs in the diagram K. We
then impose a relation for each crossing. If generators a and c meet at the
overcrossing generator b, we add the relation c = b . a. Once these relations are
added, the result is the fundamental involutory quandle Q(K).

A coloring of the diagram K by the quandle X assigns to each arc of K an
element of X. But these arcs are the generators of Q(K). Further, the relations
defining Q(K) are enforced by the definition of an X-coloring. Thus an X-
coloring of the link diagram K is exactly the same as a quandle homomorphism
homQuan(Q(K), X).

When we apply a Reidemeister move to turn the diagram K1 into the dia-
gram K2, the fundamental involutory quandle doesn’t stay the same. The set
of arcs in K2 is not the same as the set of arcs in K1, and there are different
relations imposed by the different crossings. However, we do have the

Theorem 2.2. If link diagrams K1 and K2 are related by a Reidemeister move,
then there is an isomorphism Q(K1) ∼= Q(K2).

Proof. If we refer to figure 2 we can see the proof. For example, let’s say that
K1 is on the left side of a Reidemeister II move, while K2 is on the right.

The labels in the middle row of figure 2 describes a coloring of K2 us-
ing the quandle Q(K1), or equivalently a coloring of K1 using the quandle
Q(K2). That is, we have homomorphisms f ∈ homQuan(Q(K2), Q(K1)) and
g ∈ homQuan(Q(K1), Q(K2)). These are clearly inverses of each other, estab-
lishing the isomorphism.

In particular, this isomorphism gives a bijection between the sets of col-
orings homQuan(Q(K1), X) and homQuan(Q(K2), X), which reestablishes the
invariance of coloring numbers.

3 Categorification

Categorification is, simply put

... the process of finding category-theoretic analogues of set-theoretic
concepts by replacing sets with categories, functions with functors,
and equations between functions by natural isomorphisms between
functors, which in turn should satisfy certain equations of their own,
called ‘coherence laws’.[2]

More to the point, we want to take things we’d called “identical” and see them
as merely “equivalent”.

In the case at hand, we’re considering a knot to be an equivalence class of
knot diagrams under the Reidemeister moves. Instead, we’d like to think of link
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diagrams as the objects of a category KDiag. The morphisms will be sequences
of Reidemeister moves. Since any such move can be reversed, this category of
link diagrams forms a groupoid. Now we can recast theorem 2.1 as follows:

Theorem 3.1. For any involutory quandle X we have a functor ColX from the
groupoid KDiag to the set of natural numbers, considered as a category with no
non-identity morphisms.

Proof. To any diagram we associate the number of X-colorings. This defines
the functor on objects.

Since every morphism is a composite of Reidemeister moves, we just need to
define the functor on the Reidemeister moves to define it on all morphisms. But
we know that under a Reidemeister move the number of X-colorings remains
the same, so to any move between two diagrams we can associate the identity
morphism on the (common) number of colorings.

We can also categorify the value of our invariant. Instead of considering
how many colorings a given diagram has, we should instead consider the set of
colorings itself. We further refine theorem 3.1 to state:

Theorem 3.2. For any involutory quandle X we have a functor

ColX : KDiag→ Set

which associates to any link diagram K the set of X-colorings of K.

Proof. Indeed, we can now see 2.2 as asserting the functoriality of the funda-
mental involutory quandle construction. That is, to a sequence of Reidemeister
moves connecting two link diagrams we get an isomorphism of fundamental
involutory quandles. Then we can define ColX(K) = homQuan(Q(K), X)

Thus a sequence of Reidemeister moves connecting two link diagrams gives
an explicit bijection between the sets of X-colorings. Since the sets are changing
as we change the diagram, it no longer seems appropriate to call our functor a
“link invariant”. Instead, we will make the following definition

Definition 3.3. A link covariant is a functor from the groupoid KDiag to any
other category. If the image of each morphism is an identity morphism, we call
the functor a link invariant.

Thus the fundamental involutory quandle of a knot diagram is a covariant,
as is the set of X-colorings for any involutory quandle X. Many other well-
known “invariants” are actually covariants under this definition, like the knot
group given by the Wirtinger presentation[10].
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4 Tangles

4.1 The 2-category of Tangles

Now that we’ve categorified our link invariant, we have enough breathing room
to truly extend its domain of definition. Specifically, we want to color tangle
diagrams.

Topologically, a tangle is like a knot or a link embedded in a cube, but we
now allow arc components with their edges running to marked points on the top
and bottom of the cube. These tangles are known to form a monoidal category
T ang. The objects of this category are the natural numbers, and a morphism
from m to n is a tangle with m points on the bottom of its cube, and n endpoints
on the top.

If we have a tangle from n1 to n2, and another tangle from n2 to n3, we can
stack the second cube on top of the first and splice together the n2 endpoints in
the middle. This defines our composition. The monoidal product of two objects
is their sum as natural numbers, while the monoidal product of two tangles is
given by stacking their cubes side-by-side.

Just as for knots and links, tangles can be described by tangle diagrams.
Ambient isotopies of tangles are again equivalent to sequences of Reidemeis-
ter moves. This leads to a well-known presentation of T ang as a monoidal
category[6]:

Theorem 4.1. The category T ang of tangle diagrams is generated by the tangle
diagrams {X+, X−,∪,∩} with relations

T0. (∪ ⊗ I1) ◦ (I1 ⊗ ∩) = I1 = (I1 ⊗ ∪) ◦ (∩ ⊗ I1)

T ′0. (I1 ⊗ ∪) ◦ (X± ⊗ I1) = (∪ ⊗ I1) ◦ (I1 ⊗X∓)

T1. ∪ ◦X± = ∪

T2. X± ◦X∓ = I2

T3. (X+⊗ I1)◦ (I1⊗X+)◦ (X+⊗ I1) = (I1⊗X+)◦ (X+⊗ I1)◦ (I1⊗X+)

We read the generator X+ as a right-handed crossing, X− as a left-handed
crossing, ∪ as a local minimum in the tangle diagram, and ∩ as a local maximum.
The relations T1, T2, and T3 then encode the three Reidemeister moves, while
T0 and T ′0 handle the interaction of local maxima and minima with each other
and with crossings.

As we did before, let’s categorify this picture. Instead of identifying two
tangle diagrams if they are related by a Reidemeister move (or one of the new
“topological” tangle moves), let’s jut consider them to be equivalent.

That is, we consider a (strict) monoidal 2-category whose objects are again
the natural numbers, and whose morphisms are built from compositions and
monoidal products of the four generating tangles. Now instead of imposing the
five relations, we add 2-isomorphisms to relate any tangle diagrams that would
be identified by the relations. It is this 2-category that we will refer to as T ang.

In analogy with definition 3.3 for links, we introduce the following
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Definition 4.2. A tangle covariant is a monoidal 2-functor from the monoidal
2-category T ang to any other 2-category. If the image of each 2-morphism is
an identity 2-morphism, we call the functor a tangle invariant.

The straightforward approach now is to define a coloring of an unoriented
tangle diagram by an involutory quandle X exactly as we did for link diagrams.
We assign an element of X to each arc and subject these assignments to re-
strictions at crossings just as before. This indeed gives a set of X-colorings, but
there is no way to compose two of these sets as morphisms in some category.
We need to extend our na ive notion of the set of tangle colorings and give it
“handles” that we can use to compose them.

5 Spans

5.1 The 2-category of spans

Given a category C with pullbacks we define the 2-category Span(C) of spans
on C[3]. It will have the same objects as C. A morphism f : A→ B in Span(C)
will be a “span” in C: an object F and a pair of morphisms in C: A

fl←− F
fr−→ B.

Then, given spans f = A
fl←− F

fr−→ B and g = A
gl←− G

gr−→ B, a 2-morphism
φ : f ⇒ g is an arrow φ : F → G so that the following diagram commutes:

A � fl
F

G

gl

6

gr

-
�

φ

B

fr

?

The “vertical” composition of 2-morphisms is straightforward. The compo-
sition of morphisms (and the “horizontal” composition of 2-morphisms) invokes

the pullbacks we assumed C to have. If we have spans f = A
fl←− F

fr−→ B and
g = B

gl←− G
gr−→ C we form their composite by pulling back the square in the

diagram

F ◦G - G
gr - C

F
? fr - B

gl

?

A

fl

?
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This composition is not quite associative, but it’s easily verified to be associative
up to a unique 2-isomorphism, which gives the associator for the 2-category.

There are a few facts about the span construction which will be useful to
us.[1]

Theorem 5.1. Given categories C and D with pullbacks and a functor F :
C → D preserving them, there is a 2-functor Span(F ) : Span(C) → Span(D)
defined by applying F to all parts of a span diagram.

Theorem 5.2. If C is a monoidal category such that the monoidal product
preserves pullbacks, then Span(C) is a monoidal 2-category.

Dually, given a category C with pushouts we can define the 2-category
CoSpan(C) of cospans. A cospan diagram is like a span diagram, but with
the arrows pointing in instead of out, and we compose them by pushing out
a square rather than pulling back, but otherwise everything we’ve said about
spans holds for cospans.

5.2 Coloring Spans

The category Set of sets has fibered products, which act as pullbacks, and so we
have a 2-category Span(Set). The two functions out to the side of the central
set in a span will provide us with exactly the handles we need to compose sets
of colorings.

Now we can extend theorem 3.2 to:

Theorem 5.3. For any involutory quandle X we have a 2-functor

ColX : T ang → Span(Set)

On an object n of T ang we define ColX(n) = Xn the set of n-tuples of
elements of X.

For a tangle diagram T : m → n from m free ends to n free ends we define
the span

Xm ← ColX(T )→ Xn

where the arrow on the left is the function sending a coloring of T to the coloring
it induces on the lower endpoints of the tangle, and the one on the right is the
similar function for the upper endpoints.

The 2-functor is defined on 2-morphisms by the diagrams in figure 2, as in
theorem 3.2.

Proof. The main thing to check here is that composition of coloring spans really
does reflect composition of tangles. But given a composite tangle T1 ◦ T2, a
coloring in ColX(T1 ◦ T2) is exactly a coloring of T1 and a coloring of T2 that
agree on the endpoints we splice together to compose the tangles. This is exactly
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the definition of the fibered product

ColX(T1 ◦ T2) - ColX(T2) - Xp

ColX(T1)
?

- Xn
?

Xm
?

Notice what happens to this picture when we consider a link as a tangle
from 0 to 0. Both sides of the span become empty products – singletons – and
the functions in the span become trivial. What remains is the old set of link
colorings.

5.3 The Fundamenal Involutory Quandle Cospan

Earlier we identified the fundamental involutory quandle Q(K) of a link diagram
K as the quandle that captures coloring numbers for all involutory quandles X:

ColX(K) ∼= homQuan(Q(K), X)

The same construction can give us a quandle Q(T ) from a tangle diagram
T , which then gives us the set of X-colorings of T . Can we get the sides of our
span as well?

Indeed, the free quandle on n generators Qn satisfies homQuan(Qn, X) =
Xn. We can choose these generators to be a collection of free ends of our tangle
diagram, and the inclusion of those ends into the whole diagram gives us a
homomorphism Qn → Q(T ).

Theorem 5.4. There is a 2-functor extending the fundamental involutory quan-
dle to tangles:

Q : T ang → CoSpan(Quan)

On an object n in T ang we define Q(n) = Qn, the free quandle on n gener-
ators.

For a tangle diagram T : m → n from m free ends to n free ends we let
Qm be the free quandle on the incoming ends and Qn be the free quandle on the
outgoing ends. We define the cospan

Qm → Q(T )← Qn

where the arrows are the quandle homomorphisms induced by including the end-
points into the tangle diagrams.
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For a 2-morphism φ we define Q(φ) by referring to figure 2, as in theorem
2.2.

Proof. Again, the meat of the proof is in showing that composition of tangles
really does correspond to a pushout in Quan.

Composition of tangle diagrams T1 and T2 consists of laying down both
diagrams and joining some arcs from T1 to arcs from T2, as determined by
the lineup of the endpoints. But matching endpoints corresponds to adding
relations saying that the image of a generator of Qn in Q(T1) equals its image
as a generator in Q(T2). This amalgamated free product is exactly the pushout
construction in Quan.

Again, if we consider a link as a tangle from 0 to 0, the free quandle on zero
generators is trivial, as are all homomorphisms from it. The only nontrivial
information in this cospan is the old fundamental involutory quandle of the
link.

Now we can use this fundamental involutory quandle cospan to recover the
coloring spans. The contravariant hom-functor homQuan( , X) automatically
takes all colimits to limits, so in particular it preserves pullbacks as a functor
Quanop → Set.

Theorem 5.5. The coloring span 2-functor ColX factors as the composition
of the span of the hom-functor Span(homQuan( , X)) and the fundamental
involutory quandle 2-functor Q.

5.4 Monoidal structure

All of the 2-categories considered above also carry monoidal structures, and all
the 2-functors preserve them. This allows us to obtain tangle covariants, and
to decategorify them to tangle invariants.

The category Set has all finite products, so it has the Cartesian monoidal
structure. The direct product of sets preserves pullbacks, so Span(Set) is a
monoidal 2-category.

Similarly, Quan has finite coproducts given by the free product of quandles,
or equivalently by the pushout over the free quandle on zero generators. These
coproducts preserve pushouts, so CoSpan(Quan) is a monoidal 2-category.

Theorem 5.6. The induced 2-functor

Span(homQuan( , X)) : CoSpan(Quan)→ Span(Set)

is monoidal.

Proof. This is a straightforward consequence of the fact that the hom-functor
homQuan( , X) : Quanop → Set preserves products.

Theorem 5.7. The fundamental involutory quandle cospan 2-functor

Q : T ang → CoSpan(Quan)

is monoidal.
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Proof. Given two tangles T1 : m1 → n1 and T2 : m2 → n2 we form their
monoidal product T1 ⊗ T2 by laying them side-by-side. When we calculate the
fundamental involutory quandle of this diagram, we just use all the generators
and relations that come from each of T1 and T2, and none of them interact with
each other. Thus the quandle of T1 ⊗ T2 is the free product of the quandles of
T1 and T2. Similarly at the ends, Qm1+m2 is the free product of Qm1 and Qm2 ,
and Qn1+n2 is the free product of Qn1 and Qn2 . So the monoidal product of
tangles corresponds under Q to taking free products of cospan diagrams. But
this is just the induced monoidal structure on CoSpan(Quan).

Theorem 5.8. For any involutory quandle X the coloring span 2-functor

ColX : T ang → Span(Set)

is monoidal.

Proof. This is an immediate corollary of the preceding theorems and theorem
5.5

6 Decategorifying

6.1 Coloring Matrices

When we decategorify a coloring set we get a coloring number. What happens
when we decategorify a coloring span?

A 2-isomorphism in the 2-category Span(Set) is a bijection φ : F → G in
diagram

A � fl
F

G

gl

6

gr

-
�

φ

B

fr

?

The span functions fl and fr partition F into its “double preimages”

F =
⋃
a∈A
b∈B

Fa,b Fa,b = {x ∈ F |fl(x) = a, fr(x) = b}

Similarly, the functions gl and gr partition G into its double preimages Ga,b.
Then for the diagram above to commute the function φ must decompose into
functions φa,b : Fa,b → Ga,b. And then for φ to be a bijection, each of the φa,b

must be a bijection.
So when we identify isomorphic spans of sets, we retain only the cardinality

of each of the double preimages. We are left with a matrix of cardinal numbers
indexed by the set A on the one side and the set B on the other.
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For a coloring span, these index sets are the colorings of the endpoints.
Thus when we decategorify a coloring span we get a matrix ColX(T ) indexed
by colorings of the endpoints of the tangle. The entry ColX(T )µν is the number
of colorings of the diagram T that agree with the coloring µ on the incoming
ends and with the coloring ν on the outgoing ends.

This interpretation as matrices is compatible with matrix multiplication.
That is, given tangle diagrams T1 : m → l and T2 : l → n, the number of
colorings ColX(T1 ◦ T2)µν agreeing with the colorings µ and ν on the ends can
be calculated as a sum of products of coloring numbers:

ColX(T1 ◦ T2)µν =
∑

λ∈Xl

ColX(T1)µλColX(T2)λν

Decategorification also plays nice with the monoidal structure on spans in-
duced by the product of sets. Take two diagrams T1 : m1 → n1 and T2 : m2 →
n2. A coloring µ1 of the incoming ends of T1 and a coloring µ2 of the incoming
ends of T2 combine to give a coloring (µ1, µ2) ∈ Xm1+m2 of the incoming ends
of T1 ⊗ T2. Similarly, we can combine colorings of the outgoing strands of each
diagram to get a coloring (ν1, ν2) ∈ Xn1+n2 of the outgoing strands of T1 ⊗ T2.
Every coloring of the incoming or outgoing strands arises in this manner.

Now when we count the colorings of T1⊗T2 compatible with a given coloring
of the incoming and outgoing ends, we find

ColX(T1 ⊗ T2)(µ1,µ2)(ν1,ν2) = ColX(T1)µ1ν1ColX(T2)µ2ν2

= (ColX(T1) � ColX(T2))(µ1,µ2)(ν1,ν2)

This follows since a coloring of T1⊗T2 is simply a coloring of each of T1 and T2

with no particular relation between them. This shows that the coloring matrix
for the monoidal product T1 ⊗ T2 is the Kronecker product of the coloring
matrices for T1 and T2.

Theorem 6.1. For any finite involutory quandle X, there is a monoidal 2-
functor

ColX : T ang →Mat(N)

where the target category is that of matrices with natural number entries, and
with identity 2-morphisms added.

Proof. If we pick d to be the cardinality of X, then there are exactly dn colorings
of a collection of n endpoints in a tangle. We thus set ColX(n) = dn on objects.

We already have a coloring span of sets for every tangle. Even if we dis-
regard the coloring relations at crossings, we can only pick one color from X
for each arc in the diagram, and so the sets in the coloring span are finite.
Taking cardinalities, we get a matrix of natural numbers. As described above,
this assignment of a coloring matrix to a tangle preserves the composition and
monoidal structure.
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Finally, if we have a 2-morphism φ : T1 ⇒ T2 in T ang we know that the
coloring matrices for T1 and T2 will be the same, so we can pick ColX(φ) to be
the identity 2-morphism on that matrix.

Since every 2-morphism becomes an identity 2-morphism under this functor,
we have a tangle invariant.

In particular, when we consider a link L as a tangle from 0 to 0, we can
find the 1× 1 matrix ColX(L). The single entry in this matrix is the number of
X-colorings of the link L.

Instead of restricting our attention to links, we may instead consider any n-
strand braid as a tangle from n to n. In this case we find a matrix representation
ColX of each braid group Bn.

6.2 Computation

It turns out that not only do we have a tangle invariant in our coloring matrices,
we have a straightforward way of computing them. The category of tangles was
given by generators and relations. Thus we can calculate the coloring matrix
of each generating tangle by hand, and then assemble the coloring matrix using
matrix multiplications and Kronecker products.

The matrix for each generating tangle is straightforward to work out. The
right-handed crossing, for instance, takes a pair of colors for each index. The
entry ColX(X+)(a,b)(c,d) will be 1 if a = d and c = a . b, and 0 otherwise. As an
example, figure 3 shows all the coloring matrices of the generating tangles for
the quandle D(Z3).

Computations with these matrices may be tedious by hand, but they are
easily programmed into a computer.
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ColD(Z3)(∪) =



1
0
0
0
1
0
0
0
1


ColD(Z3)(∩) =

(
1 0 0 0 1 0 0 0 1

)

ColD(Z3)(X
+) =



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1



ColD(Z3)(X
−) =



1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1



Figure 3: D(Z3)-coloring matrices for the generators of T ang
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