Natural Transformations and Functor Categories
So we know about categories and functors describing transformations between categories. Now we come to transformations between functors — natural transformations.
This is really what category theory was originally invented for, and the terminology predates the theory. Certain homomorphisms were called “natural”, but there really wasn’t a good notion of what “natural” meant. In the process of trying to flesh that out it became clear that we were really talking about transformations between the values of two different constructions from the same source, and those constructions became functors. Then in order to rigorously define what a functor was, categories were introduced.
Given two functors and
, a natural transformation
is a collection of arrows
in
indexed by the objects of
. The condition of naturality is that the following square commutes for every arrow
in
:
The vertical arrows from from applying the two functors to the arrow , and the horizontal arrows are the components of the natural transformation.
If we have three functors ,
, and
from
to
and natural transformations
and
we get a natural transformation
with components
. Indeed, we can just stack the naturality squares beside each other:
and the outer square commutes because both the inner ones do.
Every functor comes with the identity natural transformation , whose components are all identity morphisms. Clearly it acts as the identity for the above composition of natural transformations.
A natural transformation is invertible for the above composition if and only if each component is invertible as an arrow in . In this case we call it a “natural isomorphism”. We say two functors are “naturally isomorphic” if there is a natural isomorphism between them.
All of this certainly looks like we’re talking about a category, but again the set theoretic constraints often work against us. There are, however, times where we really do have a category. If one of or
(or both) are small, then all the set theory works out and we get an honest category of functors from
to
. We will usually denote this category as
. Its objects are functors from
to
, and its morphisms are natural transformations between such functors.
And now we can explain the notation for the category of arrows. This is the category of functors from
to
! What is a functor from
to
? Remember that
is the category with two objects
and
and one non-trivial arrow
. Thus a functor
is defined by an arrow
, and there’s exactly one functor for every arrow in
.
Now let’s say we have two such functors and
. A natural transformation
consists of morphisms
and
so that the naturality square commutes. But this is the same thing we used to define morphisms in the arrow category, just with some different notation!
Natural transformations and functor categories show up absolutely everywhere once you know to look for them. We’ll be seeing a lot more examples as we go on.
Comma Categories
Another useful example of a category is a comma category. The term comes from the original notation which has since fallen out of favor because, as Saunders MacLane put it, “the comma is already overworked”.
We start with three categories ,
, and
, and two functors
and
. The objects of the comma category
are triples
where
is an object of
,
is an object of
, and
is an arrow
in
. The morphisms are pairs
— with
an arrow in
and
an arrow in
— making the following square commute:
So what? Well, let’s try picking to be the functor
sending the single object of
to the object
. Then let
be the identity functor on
. Now an object of
is an arrow
, where
can be any other object in
. A morphism is then a triangle:
Work out for yourself the category .
Here’s another example: the category . Verify that this is exactly the arrow category
.
And another: check that given objects and
in
, the category
is the discrete category (set)
.
Neat!