## Future directions

I’m wrapping up my coverage of ring theory (for now). There’s a lot I’ve left unsaid about rings, and also about groups. I’m hoping, though, that I’ve given a certain amount of a feel for how algebraic structures work in preparation for the next topic: categories.

There are a number of readers, I know, who have been waiting for this point almost as much as I have been. There are also some who are dreading it. Everything up until this point has been stuff that everyone has to know, but categories are still a bit controversial in some circles. Many people find them even more abstract, or technical, or even content-free than other parts of algebra.

Category theory is at turns praised and derided with the same phrase, “abstract nonsense”. Indeed the earliest uses were to make general statements about algebra, just like ring theory makes general statements about polynomials, and polynomials make general statements about numbers. For some reason there are still mathematicians who draw a line in the sand and say, “Here! No further!”, just as others saw it as the next natural step.

Personally, I have been drawn to categories since I knew they existed. I still remember being shown the natural transformation from the identity functor on the category of vector spaces over a given field to the double-dual functor, and going back to Jeff Adams’ office (yes, the same Jeff Adams) again and again for more back in the spring of 1999. I hope now to say what it is that I saw then (and still see) in category theory, and to make the case for them. I really, honestly believe that within the next quarter-century nobody will be able to get a bachelor’s degree in mathematics without a passing familiarity with categories any more than one could avoid groups now, and it’s not just due to politicking on the part of its proponents as I’ve heard asserted.

First of all, categories *are* tremendously useful as a metamathematical language. I’ll show in the future how it unifies the First Isomorphism theorems, for example. I’ll also show how, in the language of categories, direct products of groups are like greatest lower bounds.

“So what,” the naysayer cries, “if this language says that those two concepts are related?” So, mathematics is about analogies. I can begin to understand *this* because I definitely understand *that* and this and that are similar in a certain way. Maybe knowing something about greatest lower bounds will tell me something new to look for in direct products of groups. Even if not, the relationships can help illuminate to newcomers — be they students or just lay readers — the essential points of the structures we consider, and more importantly *why* we consider them.

But there’s also another side of categories that the opposition completely ignores: a category can be just as useful a concrete mathematical structure as a group can, and the framework of categories can harmoniously sew together other objects into a coherent whole. The various rings and modules of matrices over a given field meld into the category of all matrices over that field. The braid groups weave together into the category of tangles.

And what do we gain from this categorical viewpoint? If unifying language isn’t enough for you, try this: category theory is, at its core, *the* language of the analytic/synthetic approach to mathematics in particular and all sciences in general. The scientific epistemology is to break complicated systems down into simpler parts, to understand those simple parts, and to understand how to reassemble them into the whole. This is exactly what category theory brings to the table: a systematic study of the nature of composition and how compositions transform when moving from one domain of discourse to another.

Category theory is the language of analogies, and analogies are the lifeblood of mathematics. Algebra gives us analogies between equations. Categories give us analogies between theories. Our future is concerned with analogies between analogies.