The Unapologetic Mathematician

Mathematics for the interested outsider

The Category of Matrices III

At long last, let’s get back to linear algebra. We’d laid out the category of matrices \mathbf{Mat}(\mathbb{F}), and we showed that it’s a monoidal category with duals.

Now here’s the really important thing: There’s a functor \mathbf{Mat}(\mathbb{F})\rightarrow\mathbf{FinVec}(\mathbb{F}) that assigns the finite-dimensional vector space \mathbb{F}^n of n-tuples of elements of \mathbb{F} to each object n of \mathbf{Mat}(\mathbb{F}). Such a vector space of n-tuples comes with the basis \left\{e_i\right\}, where the vector e_i has a {1} in the ith place and a {0} elsewhere. In matrix notation:

\displaystyle e_1=\begin{pmatrix}1\\{0}\\\vdots\\{0}\end{pmatrix}
\displaystyle e_2=\begin{pmatrix}{0}\\1\\\vdots\\{0}\end{pmatrix}

and so on. We can write e_i=\delta_i^je_j (remember the summation convention), so the vector components of the basis vectors are given by the Kronecker delta. We will think of other vectors as column vectors.

Given a matrix \left(t_i^j\right)\in\hom(m,n) we clearly see a linear transformation from \mathbb{F}^m to \mathbb{F}^n. Given a column vector with components v^i (where the index satisfies 1\leq i\leq m), we construct the column vector t_i^jv^i (here 1\leq j\leq n). But we’ve already established that matrix multiplication represents composition of linear transformations. Further, it’s straightforward to see that the linear transformation corresponding to a matrix \left(\delta_i^j\right) is the identity on \mathbb{F}^n (depending on the range of the indices on the Kronecker delta). This establishes that we really have defined a functor.

But wait, there’s more! The functor is linear over \mathbb{F}, so it’s a functor enriched over \mathbb{F}. The Kronecker product of matrices corresponds to the monoidal product of linear transformations, so the functor is monoidal, too. Following the definitions, we can even find that our functor preserves duals.

So we’ve got a functor from our category of matrices to the category of finite-dimensional vector spaces, and it preserves all of the relevant structure.


June 23, 2008 - Posted by | Algebra, Category theory, Linear Algebra

1 Comment »

  1. […] functor that we described from to is an […]

    Pingback by The Category of Matrices IV « The Unapologetic Mathematician | June 24, 2008 | Reply

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: