Hahn Decompositions
Given a signed measure on a measurable space
, we can use it to break up the space into two pieces. One of them will contribute positive measure, while the other will contribute negative measure. First: some preliminary definitions.
We call a set “positive” (with respect to
) if for every measurable
the intersection
is measurable, and
. That is, it’s not just that
has positive measure, but every measurable part of
has positive measure. Similarly, we say that
is “negative” if for every measurable
the intersection
is measurable, and
. For example, the empty set is both positive and negative. It should be clear from these definitions that the difference of two negative sets is negative, and any disjoint countable union of negative sets is negative, and (thus) any countable union at all of negative sets is negative.
Now, for every signed measure there is a “Hahn decomposition” of
. That is, there are two disjoint sets
and
, with
positive and
negative with respect to
, and whose union is all of
. We’ll assume that
, but if
takes the value
(and not
) the modifications aren’t difficult.
We write , taking the infimum over all measurable negative sets
. We must be able to find a sequence
of measurable negative sets so that the limit of the
is
— just pick
so that
— and we can pick the sequence to be monotonic, with
. If we define
as the union — the limit — of this sequence, then we must have
. The measurable negative set
has minimal measure
.
Now we pick , and we must show that
is positive. If it wasn’t, there would be a measurable subset
with
. This
cannot itself be negative, or else
would be negative and we’d have
, contradicting the minimality of
.
So must contain some subsets of positive measure. We let
be the smallest positive integer so that
contains a subset
with
. Then observe that
So everything we just said about holds as well for
. We let
be the smallest positive integer so that
contains a subset
with
. And so on we go until in the limit we’re left with
after taking out all the sets .
Since , the measure of
is finite, and so the measure of any subset of
must be finite as well. Thus the limits of the
must be zero, so that the measure of the countable disjoint union of all the
can converge. And so any remaining measurable set
that can fit into
must have
. That is,
must be a measurable negative set disjoint from
. But we must have
which contradicts the minimality of just like
would have if it had been a negative set. And thus the assumption that
is untenable, and so every measurable subset of
has positive measure.
[…] It’s not too hard to construct examples showing that Hahn decompositions for a signed measure, though they exist, are not unique. But if we have two of them — […]
Pingback by Jordan Decompositions « The Unapologetic Mathematician | June 25, 2010 |
[…] that implies that is the zero measure. The triangle inequality takes a bit more work. We take a Hahn decomposition for and […]
Pingback by The Banach Space of Totally Finite Signed Measures « The Unapologetic Mathematician | June 28, 2010 |
[…] give a Hahn decomposition corresponding to . I say that if we […]
Pingback by The Jordan Decomposition of an Indefinite Integral « The Unapologetic Mathematician | June 29, 2010 |
[…] we take the supremum over all measurable functions with everywhere. Indeed, if we take a Hahn decomposition for , then since is measurable so are and . If we take and , then we […]
Pingback by Integration with Respect to a Signed Measure « The Unapologetic Mathematician | June 30, 2010 |
[…] let be a Hahn decomposition for . We find that is a -finite measure on , while is a -finite measure on […]
Pingback by The Radon-Nikodym Theorem for Signed Measures « The Unapologetic Mathematician | July 8, 2010 |
[…] holds for itself, and so we may assume that is also a measure. We can further simplify by using Hahn decompositions with respect to both and , passing to subspaces on which each of our signed measures has a […]
Pingback by The Radon-Nikodym Chain Rule « The Unapologetic Mathematician | July 12, 2010 |